Atoms, Molecules & Stoichiometry

Question Paper 2

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Atoms, Molecules & Stoichiometry
Sub-Topic	
Paper Type	Theory
Booklet	Question Paper 2

Time Allowed: 62 minutes

Score: /51

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 (a)		Define the term <i>mole</i> .					
				 [1]			
	(b)	100	cm ³ of a gaseous hydrocarbon, C_xH_y , was reacted with 100 cm ³ of oxygen gas, an excess	S.			
		The	e final volume of the gaseous mixture was 95 cm ³ .				
			s gaseous mixture was treated with concentrated, aqueous sodium hydroxide to absorb the bon dioxide present. This reduced the gas volume to 75 cm ³ .	he			
		All gas volumes were measured at 298 K and 100 kPa.					
		(i)	Write an equation for the reaction between sodium hydroxide and carbon dioxide.	F 4 7			
		(ii)	Calculate the volume of carbon dioxide produced by the combustion of the hydrocarbon				
		(iii)	$\mbox{volume of CO$_2$ produced = cm3 } \label{eq:collection}$ Calculate the volume of oxygen used up in the reaction with the hydrocarbon.	[1]			
		. ,					
			volume of O ₂ used = cm ³	[1]			
	((iv)	Use your answers to (b)(ii) and (b)(iii) , together with the initial volume of hydrocarbon, balance the equation below.	to			
			$C_xH_y +O_2 \rightarrowCO_2 + zH_2O$	[2			
		(v)	Deduce the values of x , y and z in the equation in (iv).				
			<i>X</i> =				
			<i>y</i> =				
			Z =				

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) Another hydrocarbon, \mathbf{W} , with the formula C_4H_8 , reacts with hydrogen bromide, HBr, to give two products \mathbf{X} and \mathbf{Y} . \mathbf{X} and \mathbf{Y} are structural isomers of molecular formula C_4H_9Br . Reaction of X with aqueous alkali produces an alcohol, Z, that has no reaction with acidified dichromate(VI). (i) Give the structures and names of the compounds W, X, Y, and Z W Υ [4] (ii) When **W** reacts with hydrogen bromide, more **X** than **Y** is produced. Explain why.

[Total: 15]

2 (a) Successive ionisation energies for the elements magnesium to barium are given in the table.

element	1st ionisation energy/kJ mol ⁻¹	2nd ionisation energy/kJ mol ⁻¹	3rd ionisation energy/kJ mol ⁻¹
Mg	736	1450	7740
Ca	590	1150	4940
Sr	548	1060	4120
Ва	502	966	3390

(i)	Explain why the first ionisation energies decrease down the group.
	[3]
(ii)	Explain why, for each element, there is a large increase between the 2nd and 3rd ionisation energies.
	ioi

(b) A sample of strontium, atomic number 38, gave the mass spectrum shown. The percentage abundances are given above each peak.

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

	(i)	Complete the full electronic configuration of strontium.	
		1s ² 2s ² 2p ⁶	[1]
	(ii)	Explain why there are four different peaks in the mass spectrum of strontium.	
			[1]
	(iii)	Calculate the atomic mass, A_r , of this sample of strontium. Give your answer to three significant figures.	
		$A_{r} = \dots$	[2]
(c)		compound of barium, ${f A}$, is used in fireworks as an oxidising agent and to produce a ground our.	een
	(i)	Explain, in terms of electron transfer, what is meant by the term oxidising agent.	
			[1]
	(ii)	A has the following percentage composition by mass: Ba, 45.1; Cl, 23.4; O, 31.5.	
		Calculate the empirical formula of A.	
		empirical formula of A	[3]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(d) Some reactions involving magnesium and its compounds are shown in the reaction scheme below.

(i) Give the formulae of the compounds X, Y and Z.

	X	
	Υ	
	z	
		[3]
(ii)	Name the reagent needed to convert $\mathbf{Y}(s)$ into $\mathbf{Z}(aq)$ in reaction 1 and write an equation the reaction.	for
	reagent	
	equation	
		[2]
(iii)	How would you convert a sample of Z (s) into Y (s) in reaction 2 ?	
		[1]
(iv)	Give equations for the conversions of Mg into X, and Z(s) into Y.	
	Mg to X	
	Z to Y	
		[2]

[Total: 21]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3 Compound $\bf Q$ is a viscous liquid which is very soluble in water. The $M_{\rm r}$ of $\bf Q$ is 90.0.

Three possible structures for **Q** are shown below.

R	S	Т
HOCH,CH,CO,H	HOCH ₂ CO ₂ CH ₃	HCO ₂ CH ₂ CH ₂ OH

(a) (i)	What type of isomerism do R, S and T show?	
(i	i)	What oxygen-containing functional groups are present in R , S and T ? Give their full names .	
		R and	
		s and	
		T and	
(ii	i)	Which functional group(s) in (ii) will react with sodium carbonate?	
(iv	/)	Which functional group(s) in (ii) will react with sodium metal?	
			 [6]

- **(b)** When 0.002 mol of $\bf Q$ is reacted with an excess of solid sodium carbonate, Na₂CO₃, 24 cm³ of carbon dioxide, measured at room temperature and pressure, is produced.
 - (i) Calculate the amount, in moles, of carbon dioxide produced in this reaction.
 - (ii) Hence calculate the amount, in moles, of carbon dioxide produced by 1 mol of Q.

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

When 0.002 mol of **Q** is reacted with an excess of metallic sodium, 48 cm³ of hydrogen, measured at room temperature and pressure, is produced.

(c)	(i)	Calculate the amount, in moles, of hydrogen molecules produced in this reaction.
	(ii)	Hence calculate the amount, in moles, of hydrogen molecules produced by 1 mol of Q .
		[2]
(d)		e your answers to (b) and (c) to deduce which structure, R , S or T , corresponds to the cture of Q and write balanced equations for the reactions that occurred.
	ider	ntity of Q is
	equ	ation for reaction with sodium carbonate
	equ	ation for reaction with sodium metal
		[5]
		[Total: 15]