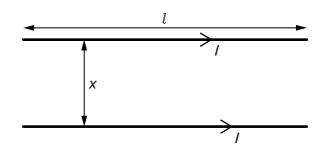
Physical Quantities & Units Question paper 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Physical Quantities & Units
Sub Topic	
Paper Type	Theory
Booklet	Question paper 2

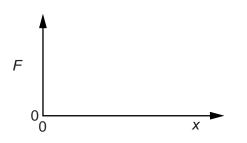

Time Allowed:	83 minutes
Score:	/69
Percentage:	/100

A*	А	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a) State the SI base units of force.

.....[1]

(b) Two wires each of length l are placed parallel to each other a distance x apart, as shown in Fig. 1.1.


Each wire carries a current *I*. The currents give rise to a force *F* on each wire given by

$$F = \frac{KI^2l}{x}$$

where *K* is a constant.

(i) Determine the SI base units of K.

(ii) On Fig. 1.2, sketch the variation with x of F. The quantities I and l remain constant.

(iii) The current / in both of the wires is varied.

On Fig. 1.3, sketch the variation with I of F. The quantities x and l remain constant.

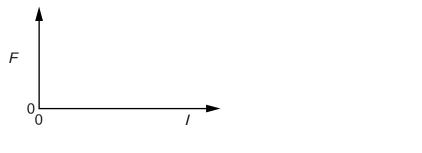


Fig. 1.3

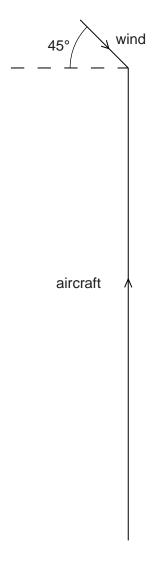
[1]

2 (a) The spacing between two atoms in a crystal is 3.8×10^{-10} m. State this distance in pm.

spacing = pm [1]

(b) Calculate the time of one day in Ms.

time = Ms [1]


(c) The distance from the Earth to the Sun is 0.15 Tm. Calculate the time in minutes for light to travel from the Sun to the Earth.

time = min [2]

(d) Underline all the vector quantities in the list below.

distance	energy	momentum	weight	work	[1]
----------	--------	----------	--------	------	-----

(e) The velocity vector diagram for an aircraft heading due north is shown to scale in Fig. 1.1. There is a wind blowing from the north-west.

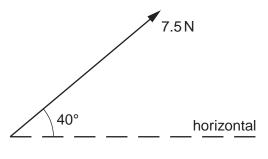
The speed of the wind is 36 m s^{-1} and the speed of the aircraft is 250 m s^{-1} .

- (i) Draw an arrow on Fig. 1.1 to show the direction of the resultant velocity of the aircraft. [1]
- (ii) Determine the magnitude of the resultant velocity of the aircraft.

3 (a) (i) State the SI base units of volume.

base units of volume[1]

(ii) Show that the SI base units of pressure are $kgm^{-1}s^{-2}$.


[1]

(b) The volume V of liquid that flows through a pipe in time t is given by the equation

$$\frac{V}{t} = \frac{\pi P r^4}{8Cl}$$

where P is the pressure difference between the ends of the pipe of radius r and length l. The constant C depends on the frictional effects of the liquid.

Determine the base units of C.

Calculate the component of the force that acts

(i) horizontally,

horizontal component = N [1]

(ii) vertically.

vertical component = N [1]

(d) Two strings support a load of weight 7.5 N, as shown in Fig. 1.2.

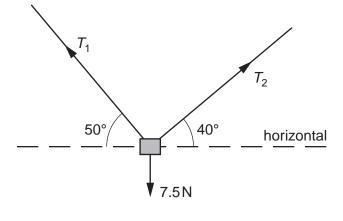
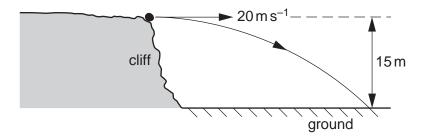


Fig. 1.2

One string has a tension T_1 and is at an angle 50° to the horizontal. The other string has a tension T_2 and is at an angle 40° to the horizontal. The object is in equilibrium. Determine the values of T_1 and T_2 by using a vector triangle or by resolving forces.

Save My Exams! – The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>


5 (a) Distinguish between *scalar* quantities and *vector* quantities.

......[2]

(b) In the following list, underline **all** the scalar quantities.

acceleration	force	kinetic energy	mass	power	weight	[1]
--------------	-------	----------------	------	-------	--------	-----

(c) A stone is thrown with a horizontal velocity of 20 m s⁻¹ from the top of a cliff 15 m high. The path of the stone is shown in Fig. 1.1.

Air resistance is negligible.

For this stone,

(i) calculate the time to fall 15 m,

time = s [2]

(ii) calculate the magnitude of the resultant velocity after falling 15 m,

(iii) describe the difference between the displacement of the stone and the distance that it travels.

Save My Exams! - The Home of Revision

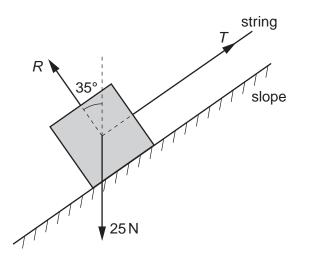
For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

- 6 (a) Two of the SI base quantities are mass and time. State three other SI base quantities.

 - (b) A sphere of radius *r* is moving at speed *v* through air of density ρ . The resistive force *F* acting on the sphere is given by the expression

 $F = Br^2 \rho v^k$

where *B* and *k* are constants without units.


(i) State the SI base units of F, ρ and v.

ho	
<i>v</i>	[3]

(ii) Use base units to determine the value of *k*.

7	(a) (i)	Distinguish between vector quantities and scalar quantities.
		[2]
	(ii)	State whether each of the following is a vector quantity or a scalar quantity.
		1. temperature
		[1]
		2. acceleration of free fall
		[1]
		3. electrical resistance
		[1]

(b) A block of wood of weight 25N is held stationary on a slope by means of a string, as shown in Fig. 1.1.

Fig. 1.1

The tension in the string is T and the slope pushes on the block with a force R that is normal to the slope.

Either by scale drawing on Fig. 1.1 or by calculation, determine the tension T in the string.

- 8 Make estimates of the following quantities.
 - (a) the thickness of a sheet of paper

		thickness =	r	mm	[1]
(b)	the time for sound to travel 100m in air				
		time =		. S	[1]
(c)	the weight of 1000 cm ³ of water				
		weight =		Ν	[1]

9 A unit is often expressed with a prefix. For example, the gram may be written with the prefix 'kilo' as the kilogram. The prefix represents a power-of-ten. In this case, the power-of-ten is 10³.

Complete Fig. 1.1 to show each prefix with its symbol and power-of-ten.

prefix	symbol	power-of-ten
kilo	k	10 ³
nano	n	
centi		10 ⁻²
	М	10 ⁶
	т	10 ¹²

Fig. 1.1

[4]

10 (a) Two of the SI base quantities and their units are mass (kg) and length (m).

Name three other SI base quantities and their units.

1.	quantity	unit
2.	quantity	unit
З	quantity	unit
0.		[3]

(b) The pressure p due to a liquid of density ρ is related to the depth h by the expression

$$p = \rho g h$$
,

where g is the acceleration of free fall.

Use this expression to determine the derived units of pressure. Explain your working.