Atoms, Molecules & Stoichiometry

Question Paper 3

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Atoms, Molecules & Stoichiometry
Sub-Topic	
Paper Type	Theory
Booklet	Question Paper 3

Time Allowed: 77 minutes

Score: /64

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1	Compou	and A is an organic compound which contains carbon, hydrogen and oxygen.
	oxide, C	240 g of the vapour of A is slowly passed over a large quantity of heated copper(II) auO, the organic compound A is completely oxidised to carbon dioxide and water is the only other product of the reaction.
	The proformed.	ducts are collected and it is found that 0.352 g of CO_2 and 0.144 g of $\mathrm{H}_2\mathrm{O}$ are
	(a) In t	his section, give your answers to three decimal places.
	(i)	Calculate the mass of carbon present in 0.352 g of CO ₂ .
		Use this value to calculate the amount, in moles, of carbon atoms present in $0.240\mathrm{g}$ of \mathbf{A} .
	(ii)	Calculate the mass of hydrogen present in 0.144 g of $\rm H_2O$.
		Use this value to calculate the amount, in moles, of hydrogen atoms present in 0.240 g of ${\bf A}.$
	(iii)	Use your answers to calculate the mass of oxygen present in 0.240 g of A .
		Use this value to calculate the amount, in moles, of oxygen atoms present in 0.240 g of A .

(b) Use your answers to (a) to calculate the empirical formula of A.

												[1	1]
(c)				ample o			urised	at 60°0	C, the	vapour	OCC	upied a volume o	of
	(i) U	Jse t	he gene	eral gas	equatio	n <i>pV</i> =	= nRT1	o calcı	ulate /\	∕/ _r of A .			
	(ii) ⊦	Henc	e calcul	ate the i	molecul	ar forr	nula of	A .			ı	<i>M</i> _r =	
												[3	3]
(d)			d A is a		hich do	es not	react	with 2,	4-dinit	rophen	ylhyd	drazine reagent c	or
	Sugg	est t v	vo stru	ctural fo	rmulae	for A .							
		_										[2	2]
(e)	Comp	ooun	d A con	tains on	ly carbo	on, hyd	drogen	and ox	xygen.				
			ow the his state		ion on	the op	oposite	page	about	the re	eactic	on of A with Cu(Э
												[1	1]

[Total: 13]

(a)	Con	nple	te the electronic	c configuration	s of the fol	lowing ions	S .		
	Cr ³⁻	+ :	1s ² 2s ² 2p ⁶	•••••					
	Mn ²	!+:	1s ² 2s ² 2p ⁶					[[2]
(b)	Botl	n KN	اnO ₄ and K ₂ Cr	₂ O ₇ are used a	s oxidising	agents, us	sually in acid	lic solution.	
	(i)		e information fro the [H+(aq)] in t		-	olain why th	eir oxidising	power increase	es
	 .								
	(ii)		nat colour chang npletely reduce	•	observe v	when each	of these ox	idising agents	İS
		•	KMnO ₄	from			to		
		•	K ₂ Cr ₂ O ₇	from			to		 [4]
(c)	Pas	sing	nese(IV) oxide, a stream of S to dissolve, to	SO ₂ (g) through	a suspen	sion of Mr			
	(i)		e the <i>Data Boo</i> opens to the oxi		-			<u>-</u>	at
	(ii)		e pH of the susp plain what effec				nt of this rea	action.	
]	 [4]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- (d) The main ore of manganese, pyrolusite, is mainly MnO₂. A solution of SnC l_2 can be used to estimate the percentage of MnO₂ in a sample of pyrolusite, using the following method.
 - A known mass of pyrolusite is warmed with an acidified solution containing a known amount of SnCl₂.
 - The excess Sn²⁺(aq) ions are titrated with a standard solution of KMnO₄.

In one such experiment, 0.100 g of pyrolusite was warmed with an acidified solution containing $2.00 \times 10^{-3} \, \text{mol Sn}^{2+}$. After the reaction was complete, the mixture was titrated with $0.0200 \, \text{mol dm}^{-3} \, \text{KMnO}_4$, and required $18.1 \, \text{cm}^3$ of this solution to reach the end point.

The equation for the reaction between $\mathrm{Sn^{2+}}(\mathrm{aq})$ and $\mathrm{MnO_4^-}(\mathrm{aq})$ is as follows.

$$2MnO_4^- + 5Sn^{2+} + 16H^+ \rightarrow 2Mn^{2+} + 5Sn^{4+} + 8H_2O$$

(i)	Use the Data Booklet to construct an equation for the reaction between MnO ₂ and
	Sn ²⁺ ions in acidic solution.

- (ii) Calculate the percentage of MnO₂ in this sample of pyrolusite by the following steps.
 - number of moles of MnO₄⁻ used in the titration
 - number of moles of Sn²⁺ this MnO₄⁻ reacted with
 - number of moles of Sn²⁺ that reacted with the 0.100 g sample of pyrolusite
 - number of moles of MnO₂ in 0.100 g pyrolusite. Use your equation in (i).
 - mass of MnO₂ in 0.100 g pyrolusite
 - percentage of MnO₂ in pyrolusite

3	from they a	4, Sir Humphrey Davy and Michael Faraday collected samples of a flammable gas, A , ne ground near Florence in Italy. Analysed A which they found to be a hydrocarbon. Further experiments were then dout to determine the molecular formula of A .
	(a) W	hat is meant by the term molecular formula?
	•••	
		[2]
	-	and Faraday deduced the formula of A by exploding it with an excess of oxygen and ing the products of combustion.
		omplete and balance the following equation for the complete combustion of a vdrocarbon with the formula $\mathbf{C}_x\mathbf{H}_y$.
		$C_xH_y + \left(x + \frac{y}{4}\right)O_2 \longrightarrow \dots $ [2]
	aı aı W	Then 10cm^3 of A was mixed at room temperature with 50cm^3 of oxygen (an excess) and exploded, 40cm^3 of gas remained after cooling the apparatus to room temperature and pressure. Then this 40cm^3 of gas was shaken with an excess of aqueous potassium hydroxide, OH, 30cm^3 of gas still remained.
	(i	
	(ii	The combustion of A produced a gas that reacted with the KOH(aq).
		What is the identity of this gas?
	(iii	What volume of the gas you have identified in (ii) was produced by the combustion of A?
		cm ³
	(iv	What volume of oxygen was used up in the combustion of A?
		cm ³ [4]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(d) Use your equation in (b) and your results from (c)(iii) and (c)(iv) to calculate the molecular formula of A. Show all of your working.

[3]

[Total: 11]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4	Copper and t	titanium	are	each	used	with	aluminium	to	make	alloys	which	are	light,	strong
	and resistant	to corros	sion											

Aluminium, Al, is in the third period of the Periodic Table; copper and titanium are both transition elements.

(a) Complete the electronic configuration of aluminium and of titanium, proton number 22.

Al	1s ²
Ti	1s ²

[1]

Aluminium reacts with chlorine.

(b)	(i)	Outline how, starting from aluminium powder, this reaction could be carried out in a school or college laboratory to give a small sample of aluminium chloride. A diagram is not necessary.
	(ii)	Describe what you would see during this reaction.
	()	

(iii) At low temperatures, aluminium chloride vapour has the formula Al_2Cl_6 . Draw a 'dot-and-cross' diagram to show the bonding in Al_2Cl_6 . Show outer electrons only.

Represent the aluminium electrons by •.

Represent the chlorine electrons by x.

Copper forms two chlorides, ${\rm CuC} \it{l}$ and ${\rm CuC} \it{l}_{2}$.

(c)		tien copper is reacted directly with chlorine, only $CuCl_2$ is formed. ggest an explanation for this observation.	
T .,			[1]
lita	anıum	n also reacts with chlorine.	
(d)		ien an excess of chlorine was reacted with 0.72 g of titanium, 2.85 g of a chlos formed.	oride A
	(i)	Calculate the amount, in moles, of titanium used.	
	(ii)	Calculate the amount, in moles, of chlorine atoms that reacted.	
	(iii)	Hence, determine the empirical formula of A .	
	(iv)	Construct a balanced equation for the reaction between titanium and chlorin	e.
			[4]
(e)		room temperature, the chloride of titanium, ${f A}$, is a liquid which does not c ctricity.	onduct
	Wha	at does this information suggest about the bonding and structure in A?	

[Total: 14]

			y	of the term		.			
									[2
(b)	The mos	t com	mon is	otope of ird	on is ⁵⁶ f	e; the only na	aturally oc	curring iso	tope of cobal
	Use the and of ⁵⁹		Booklei	t to comple	ete the t	able below to	show the	atomic stru	ucture of ⁵⁶ Fe
						number of			
		isotop	ре	proto	ns	neutrons	el	ectrons	
		⁵⁶ Fe)						
		⁵⁹ Co)						
(a)	A comple	o of ire	on hoo	the followin	na inoto	pic compositio	n by maa	0	[3]
(c)	A Sample	2 01 110						o s. □	
				pe mass	54	56	57		
			% b	y mass	5.84	91.68	2.17		
	(i) Defi	ne the	e term <i>i</i>	relative ato	mic ma	SS.			