Work, Energy & Power Question paper 2

Level	International A Level		
Subject	Physics		
Exam Board	CIE		
Торіс	Work, Energy & Power		
Sub Topic			
Paper Type	Theory		
Booklet	Question paper 2		

Time Allowed:	63 minutes		
Score:	/52		
Percentage:	/100		

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

1 (a) Explain what is meant by *work done*.

.....[1]

(b) A boy on a board B slides down a slope, as shown in Fig. 3.1.

Fig. 3.1

The angle of the slope to the horizontal is 30° . The total resistive force *F* acting on B is constant.

(i) State a word equation that links the work done by the force *F* on B to the changes in potential and kinetic energy.

(ii) The boy on the board B moves with velocity v down the slope. The variation with time t of v is shown in Fig. 3.2.

Fig. 3.2

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

The total mass of B is 75 kg. For B, from t = 0 to t = 2.5 s,

1. show that the distance moved down the slope is 9.3 m,

2. calculate the gain in kinetic energy,

gain in kinetic energy = J [3]

3. calculate the loss in potential energy,

loss in potential energy = J [3]

4. calculate the resistive force *F*.

F = N [3]

[2]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

2 (a) State what is meant by *work done*.

.....[1]

(b) A trolley of mass 400 g is moving at a constant velocity of 2.5 m s⁻¹ to the right as shown in Fig. 3.1.

Fig. 3.1

Show that the kinetic energy of the trolley is 1.3 J.

[2]

(c) The trolley in (b) moves to point P as shown in Fig. 3.2.

Fig. 3.2

At point P the speed of the trolley is 2.5 m s^{-1} . A variable force *F* acts to the left on the trolley as it moves between points P and Q. The variation of *F* with displacement *x* from P is shown in Fig. 3.3.

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

The trolley comes to rest at point Q.

(i) Calculate the distance PQ.

distance PQ = m [3]

(ii) On Fig. 3.4, sketch the variation with *x* of velocity *v* for the trolley moving between P and Q.

Fig. 3.4

[2]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

3 (a) Distinguish between gravitational potential energy and elastic potential energy.

- (b) A ball of mass 65g is thrown vertically upwards from ground level with a speed of $16 \,\mathrm{m\,s^{-1}}$. Air resistance is negligible.
 - (i) Calculate, for the ball,
 - 1. the initial kinetic energy,

kinetic energy = J [2]

2. the maximum height reached.

maximum height = m [2]

(ii) The ball takes time *t* to reach maximum height. For time $\frac{t}{2}$ after the ball has been thrown, calculate the ratio

potential energy of ball kinetic energy of ball.

ratio =[3]

- (iii) State and explain the effect of air resistance on the time taken for the ball to reach maximum height.
 -[1]

4 (a) An object falls vertically from rest through air. State and explain the energy conversions that occur as the object falls.

.....[3]

- (b) A ball of mass 150 g is thrown vertically upwards with an initial speed of $25 \,\mathrm{m\,s^{-1}}$.
 - (i) Calculate the initial kinetic energy of the ball.

kinetic energy = J [3]

(ii) The ball reaches a height of 21 m above the point of release.

For the ball rising to this height, calculate

1. the loss of energy of the ball to air resistance,

energy loss =J [3]

2. the average force due to the air resistance.

force = N [2]

Save My Exams! – The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

5 Two planks of wood AB and BC are inclined at an angle of 15° to the horizontal. The two wooden planks are joined at point B, as shown in Fig. 2.1.

A small block of metal M is released from rest at point A. It slides down the slope to B and up the opposite side to C. Points A and C are 0.26 m above B. Assume frictional forces are negligible.

(a) (i) Describe and explain the acceleration of M as it travels from A to B and from B to C.

[3]

(ii) Calculate the time taken for M to travel from A to B.

time = s [3]

(iii) Calculate the speed of M at B.

speed = ms^{-1} [2]

(b) The plank BC is adjusted so that the angle it makes with the horizontal is 30°. M is released from rest at point A and slides down the slope to B. It then slides a distance along the plank from B towards C.

Use the law of conservation of energy to calculate this distance. Explain your working.