Work, Energy \& Power Question paper 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Work, Energy \& Power
Sub Topic	
Paper Type	Theory
Booklet	Question paper 2

Time Allowed:	63 minutes				
Score:	/52				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1 (a) Explain what is meant by work done.
\qquad
\qquad
(b) A boy on a board B slides down a slope, as shown in Fig. 3.1.

Fig. 3.1
The angle of the slope to the horizontal is 30°. The total resistive force F acting on B is constant.
(i) State a word equation that links the work done by the force F on B to the changes in potential and kinetic energy.
\qquad
\qquad
(ii) The boy on the board B moves with velocity v down the slope. The variation with time t of v is shown in Fig. 3.2.

Fig. 3.2

The total mass of B is 75 kg .
For B, from $t=0$ to $t=2.5 \mathrm{~s}$,

1. show that the distance moved down the slope is 9.3 m ,
2. calculate the gain in kinetic energy,
gain in kinetic energy = \qquad J [3]
3. calculate the loss in potential energy,

> loss in potential energy = ... J [3]
4. calculate the resistive force F.

$$
F=
$$

2 (a) State what is meant by work done.
\qquad
\qquad
(b) A trolley of mass 400 g is moving at a constant velocity of $2.5 \mathrm{~ms}^{-1}$ to the right as shown in Fig. 3.1.

Fig. 3.1
Show that the kinetic energy of the trolley is 1.3 J .
(c) The trolley in (b) moves to point P as shown in Fig. 3.2.

Fig. 3.2
At point P the speed of the trolley is $2.5 \mathrm{~ms}^{-1}$.
A variable force F acts to the left on the trolley as it moves between points P and Q.
The variation of F with displacement x from P is shown in Fig. 3.3.

Fig. 3.3

The trolley comes to rest at point Q .
(i) Calculate the distance PQ.
distance $\mathrm{PQ}=$. ... m [3]
(ii) On Fig. 3.4, sketch the variation with x of velocity v for the trolley moving between P and Q .

Fig. 3.4

3 (a) Distinguish between gravitational potential energy and elastic potential energy.
\qquad
\qquad
\qquad
(b) A ball of mass 65 g is thrown vertically upwards from ground level with a speed of $16 \mathrm{~m} \mathrm{~s}^{-1}$. Air resistance is negligible.
(i) Calculate, for the ball,

1. the initial kinetic energy,
kinetic energy = \qquad
2. the maximum height reached.
maximum height $=$ m [2]
(ii) The ball takes time t to reach maximum height. For time $\frac{t}{2}$ after the ball has been thrown, calculate the ratio
potential energy of ball.
kinetic energy of ball.
ratio =
(iii) State and explain the effect of air resistance on the time taken for the ball to reach maximum height.
\qquad
\qquad
\qquad

4 (a) An object falls vertically from rest through air. State and explain the energy conversions that occur as the object falls.
\qquad
\qquad
\qquad
\qquad
(b) A ball of mass 150 g is thrown vertically upwards with an initial speed of $25 \mathrm{~ms}^{-1}$.
(i) Calculate the initial kinetic energy of the ball.
kinetic energy =
(ii) The ball reaches a height of 21 m above the point of release.

For the ball rising to this height, calculate

1. the loss of energy of the ball to air resistance,
energy loss =
2. the average force due to the air resistance.

5 Two planks of wood $A B$ and $B C$ are inclined at an angle of 15° to the horizontal. The two wooden planks are joined at point B, as shown in Fig. 2.1.

Fig. 2.1
A small block of metal M is released from rest at point A. It slides down the slope to B and up the opposite side to C. Points A and C are 0.26 m above B . Assume frictional forces are negligible.
(a) (i) Describe and explain the acceleration of M as it travels from A to B and from B to C.
\qquad
\qquad
\qquad
\qquad
(ii) Calculate the time taken for M to travel from A to B .
(iii) Calculate the speed of M at B.
time = ... s [3]
speed =
\qquad ms^{-1} [2]
(b) The plank BC is adjusted so that the angle it makes with the horizontal is $30^{\circ} . \mathrm{M}$ is released from rest at point A and slides down the slope to B. It then slides a distance along the plank from B towards C .

Use the law of conservation of energy to calculate this distance. Explain your working.

