Work, Energy & Power Question paper 5

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Work, Energy & Power
Sub Topic	
Paper Type	Theory
Booklet	Question paper 5

Time Allowed:	70 minutes
Score:	/58
Percentage:	/100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a) Use the definition of power to show that the SI base units of power are kgm^2s^{-3} .

(b) Use an expression for electrical power to determine the SI base units of potential difference.

units[2]

2 A spring is kept horizontal by attaching it to points A and B, as shown in Fig. 4.1.

Point A is on a movable slider and point B is on a fixed support. A cart of mass 1.7 kg has horizontal velocity *v* towards the slider. The cart collides with the slider. The spring is compressed as the cart comes to rest. The variation of compression *x* of the spring with force *F* exerted on the spring is shown in Fig. 4.2.

Fig. 4.2 shows the compression of the spring for F = 1.5 N to F = 4.5 N. The cart comes to rest when *F* is 4.5 N.

- (a) Use Fig. 4.2 to
 - (i) show that the compression of the spring obeys Hooke's law,

.....[2]

(ii) determine the spring constant of the spring,

spring constant = Nm⁻¹ [2]

(iii) determine the elastic potential energy $E_{\rm P}$ stored in the spring due to the cart being brought to rest.

*E*_P = J [3]

(b) Calculate the speed v of the cart as it makes contact with the slider. Assume that all the kinetic energy of the cart is converted to the elastic potential energy of the spring.

speed = $m s^{-1} [2]$

3 A ball is thrown from A to B as shown in Fig. 2.1.

Fig. 2.1

The ball is thrown with an initial velocity V at 60° to the horizontal. The variation with time *t* of the vertical component V_v of the velocity of the ball from t = 0 to t = 0.60 s is shown in Fig. 2.2.

Fig. 2.2

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

Assume air resistance is negligible.

- (a) (i) Complete Fig. 2.2 for the time until the ball reaches B. [2]
 - (ii) Calculate the maximum height reached by the ball.

height =m [2]

(iii) Calculate the horizontal component V_h of the velocity of the ball at time t = 0.

 $V_{\rm h} = \dots m \, {\rm s}^{-1} \, [2]$

(iv) On Fig. 2.2, sketch the variation with t of V_h . Label this sketch V_h . [1]

- (b) The ball has mass 0.65 kg. Calculate, for the ball,
 - (i) the maximum kinetic energy,

maximum kinetic energy =J [3]

(ii) the maximum potential energy above the ground.

Save My Exams! – The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

4 (a) State the principle of conservation of momentum.

(b) A ball X and a ball Y are travelling along the same straight line in the same direction, as shown in Fig. 4.1.

Ball X has mass 400 g and horizontal velocity $0.65 \,\mathrm{m \, s^{-1}}$. Ball Y has mass 600 g and horizontal velocity $0.45 \,\mathrm{m \, s^{-1}}$.

Ball X catches up and collides with ball Y. After the collision, X has horizontal velocity 0.41 m s⁻¹ and Y has horizontal velocity v, as shown in Fig. 4.2.

Fig. 4.2

Calculate

(i) the total initial momentum of the two balls,

momentum = Ns [3]

(ii) the velocity v,

 $v = \dots m s^{-1} [2]$

(iii) the total initial kinetic energy of the two balls.

	kinetic energy = J [3]
(c)	Explain how you would check whether the collision is elastic.
	[1]
(d)	Use Newton's third law to explain why, during the collision, the change in momentum of X is equal and opposite to the change in momentum of Y.
	[2]

5 (a) Determine the SI base units of power.

(b) Fig. 1.1 shows a turbine that is used to generate electrical power from the wind.

The power *P* available from the wind is given by

$$P = CL^2 \rho v^3$$

where *L* is the length of each blade of the turbine, ρ is the density of air, *v* is the wind speed, *C* is a constant.

(i) Show that C has no units.

(ii) The length *L* of each blade of the turbine is 25.0 m and the density ρ of air is 1.30 in SI units. The constant *C* is 0.931. The efficiency of the turbine is 55% and the electric power output *P* is 3.50×10^5 W.

Calculate the wind speed.

wind speed = $\dots m s^{-1}$ [3]

(iii)	Suggest two reasons why the electrical power output of the turbine is less than the
	power available from the wind.

1	
2	
£	
	[0]
	[2]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

6 (a) (i) State the principle of conservation of momentum.

.....[2]

(ii) State the difference between an elastic and an inelastic collision.

.....[1]

(b) An object A of mass 4.2 kg and horizontal velocity 3.6 m s⁻¹ moves towards object B as shown in Fig. 3.1.

Fig. 3.1

Object B of mass 1.5 kg is moving with a horizontal velocity of 1.2 m s^{-1} towards object A.

The objects collide and then both move to the right, as shown in Fig. 3.2.

Object A has velocity v and object B has velocity 3.0 m s^{-1} .

(i) Calculate the velocity v of object A after the collision.

velocity = $m s^{-1}$ [3]

(ii) Determine whether the collision is elastic or inelastic.