Light and Sound

Question paper 1

Level	IGCSE(9-1)
Subject	Physics
Exam Board	Edexcel IGCSE
Module	Double Award (Paper 1P)
Topic	Waves
Sub-Topic	Light and Sound
Booklet	Question paper 1

Time Allowed: 75 minutes

Score: /62

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	′75%	70%	60%	55%	50%	<50%

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 A student watches a demonstration of the total internal reflection of light in a semicircular glass block.

(a) He takes notes, but some of his notes are wrong.

Place a tick (\checkmark) or a cross (\mathbf{x}) in the table to show which statements are right or wrong.

The first statement is right and has been done for you.

(2)

Notes about the total internal reflection of light	Right or wrong
the angle of incidence equals the angle of reflection	√
light changes speed when it is internally reflected	
every ray entering the semicircular glass block is reflected by total internal reflection	
if $i = 0$ then the ray does not deviate	
the refractive index of glass is bigger than the refractive index of air	

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b) Jewellers cut jewels so that total internal reflection is more likely.
Light enters a jewel along the normal AB and leaves along the normal CD as shown.
Between B and C there are two total internal reflections.

Complete the path of the light through the jewel.

(3)

(c)	(i)	Show, by calculation, that the critical angle for a refractive index of 1.5 is about 4	12°. (3)
	(ii)	Explain why the quantity called refractive index has no unit.	(2)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(d) The graph shows how critical angle varies with refractive index.

(i) Add the point (1.5, 42°) to the graph.

(1)

(ii) How can you tell that the point (1.5, 42°) is **not** anomalous?

(1)

(iii) Suggest two reasons why the axes of the graph do not start from zero.

(2)

2

(Total for Question 1 = 14 marks)

2	A student uses a semicircular glass block to investigate refraction in glass.	
	(a) List three other pieces of equipment that he needs for this investigation.	(3)
		(3)
1		
2		
3		
	(b) He shines a ray of light into the block at point P, as shown.	
	P is the middle of the flat surface.	
	P	
	(i) On the diagram, draw the normal at P.	
	(,,	(1)
	(ii) Measure the angle of incidence and the angle of refraction.	
		(2)
an	gle of incidence	
an	gle of refraction	
	(iii) Explain why the ray of light changes direction at P.	
		(2)

(c) The student varies the angle of incidence and obtains this table of results.

Angle of incidence <i>i</i>	Angle of refraction <i>r</i>	sin <i>i</i>	sin <i>r</i>
11°	11° 7°		0.12
24°	15°	0.41	0.26
47° 28°		0.73	0.47
65° 36°		0.91	0.59
90° 40°		1.00	0.64

(i) Plot a graph of sin *i* against sin *r*.

(4)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(ii)	Draw t	he strai	ght lin	e of	best f	it.
(11)	Diaw	iic stiai	giit iiii	COI	DC3t i	١.

(1)

(iii) State the relationship between refractive index, angle of incidence and angle of refraction.

(1)

(iv) Use your graph to find the refractive index of glass.

(2)

refractive index =

3	A light ray can undergo total internal reflection.	
	(a) (i) What is meant by the term total internal reflection ?	
		(2)
	(ii) State two uses of total internal reflection.	(2)
		(2)
1 .		
2 .		

(b) The diagram shows a light ray entering a glass block and travelling towards point O.

The angle i is 25°.

The critical angle of the glass is 42°.

(i) Which path does the ray take after reaching point O?

(1)

- A OA
- B OB
- ☑ D OD

(ii) State the equation linking critical angle and refractive index.

(1)

(iii) Calculate the refractive index of the glass.

(2)

refractive index =

4 The diagram shows changes to light waves passing from air into glass.

(a)	(i)	The effect	shown	in	the	diagram	is
-----	-----	------------	-------	----	-----	---------	----

(1)

- A diffraction
- B dispersion
- **C** reflection
- **D** refraction
- (ii) State two ways in which the light waves change as they pass into the glass.

(2)

1				
•	 			

(b) (i) Draw the normal to the incident ray on the diagram.

(1)

(ii) Label the angle of incidence on the diagram.

(1)

(Total for Question 4 = 5 marks)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(a) A student investigates refraction of light by using a salt solution in a hollow prism.He shines a ray of blue light from A to B and traces the path of the ray through the prism.The diagram shows the path of the ray of blue light.

t by the term refraction .	(1)
v the normal at B and measure the angle of incidence.	(3)
angle of incidence =	
nes a ray of red light from A to B.	
of the salt solution is lower for red light than it is for blue	light
ch a possible path for the red light through the solution	(3)
happen to the path of the blue light if the student used gher refractive index.	
	(2)

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

(b) echnician working in a soft drinks factory uses refraction of light to measure sugar concentration in drinks.

She takes readings using a refractometer. Different sugar concentrations give different scale readings on the refractometer.

The table shows her results.

Sugar concentration (%)	Refractometer reading
0	48
10	60
30	57
50	69
70	86
90	108

(i) Plot a graph of the refractometer reading against sugar concentration and draw the curve of best fit.

(5)

(Total for Question 5 = 19 marks)			narks)
			(2)
(iv)	Describe the pattern shown by your grap	h.	
		sugar concentration =	%
			(1)
(iii)	Use your graph to find the sugar concent reading is 80.	ration when the refractometer	
		-	
		refractometer reading =	
	remactorneter reading should be.		(2)
(ii)	Circle the anomalous point on your grapl refractometer reading should be.	n and suggest what the correct	