Protein synthesis ### **Question Paper 4** | Level | International A Level | |------------|-------------------------------------| | Subject | Biology | | Exam Board | CIE | | Topic | Nucleic acids and protein synthesis | | Sub Topic | Protein synthesis | | Booklet | Theory | | Paper Type | Question Paper 4 | Time Allowed: 56 minutes Score : /46 Percentage: /100 #### **Grade Boundaries:** | A* | А | В | С | D | E | U | |------|--------|-----|-------|-------|-----|------| | >85% | '77.5% | 70% | 62.5% | 57.5% | 45% | <45% | | 1 | (a) | Explain how changes in the nucleotide sequence of DNA may affe | ct the amino acid | |---|-----|--|-------------------| | | | sequence in a protein. | [7] | | | (b) | Explain how natural selection may bring about evolution. | [8] | | | | | [Total: 15] |
 | |------| | | |
 | |
 | |
 | | | | | | | | | | | |
 | |
 | |
 | | | | | |
 | | | | | |
 | |
 | | | | | |
 | | | Fig. 3.1 shows a molecule of haemoglobin. 2 Fig. 3.1 | (a) | Explain how a molecule of haemoglobin shows the four levels of organisation of protein molecules. | |-----|---| | | primary structure | | | | | | | | | secondary structure | | | | | | | | | tertiary structure | | | | | | | | | quaternary structure | | | | | | 141 | ### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ There are many different variants of haemoglobin. The sequence of bases in DNA that code for the first seven amino acids in two variants of the β -globin polypeptide are shown in Fig. 3.2. The genetic dictionary for some of the amino acids is in Table 3.1. #### Variant 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |-----|-----|-----|-----|-----|-----|-----| | CAC | GTG | GAC | TGA | GGA | СТС | СТС | ### Variant 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |-----|-----|-----|-----|-----|-----|-----| | CAC | GTG | GAC | TGA | GGA | CAC | СТС | Fig. 3.2 #### Table 3.1 | amino acid | abbreviation | DNA triplets on the coding polynucleotide | |---------------|--------------|---| | valine | val | CAA, CAC, CAG, CAT | | proline | pro | GGA, GGC, GGG, GGT | | threonine | thr | TGA, TGC, TGG, TGT | | histidine | his | GTA, GTG | | glutamic acid | glu | CTC, CTT | | leucine | leu | AAC, AAT, GAA, GAC, GAG, GAT | | (b) | Use the genetic dictionary to describe the similarities and differences between the two variants of haemoglobin. | |-----|--| | | | | | | | | | | | ্যা | | Coll | agen is a fibrous protein found in many tissues in animals. | |------|---| | (i) | State the function of collagen in the walls of arteries. | | | | | | [1] | | (ii) | State one way in which the structure of collagen differs from the structure of haemoglobin. | | | | | | [1] | | | [Total: 9] | **3** (a) Fig. 4.1 shows the structure of deoxyribose sugar. Fig. 4.1 State the differences between the structure of deoxyribose shown in Fig. 4.1 and the ring structure of α -glucose. | You may use the space below to help you in your answer. | |---| | | | | | | | | [3] **(b)** Match the biological macromolecule with the type of bond that is formed when the molecule is synthesised. Choose from the list below. amylose cell yceride otein ylopectin | type of bond(s) | biological macromolecule | |--|--------------------------| | β,1-4 glycosidic | | | α , 1-4 glycosidic and α , 1-6 glycosidic | | | phosphodiester | | | peptide | | ### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ Semi-conservative replication of DNA and transcription involve the formation of polynucleotide chains. (c) State the type of reaction that occurs in the formation of a polynucleotide chain. [1] (d) Complete Table 4.1 to show four differences between DNA replication and DNA transcription. Table 4.1 | | replication | transcription | |---|-------------|---------------| | 1 | | | | 2 | | | | 3 | | | | 4 | | | [4] [Total: 12] #### Fig. 5.1 represents part of a DNA molecule. 4 Fig. 5.1 - (a) On Fig. 5.1 - [1] (i) draw a box around a nucleotide - (ii) label, with the letter **P**, a phosphate group. [1] | (b) | Describe how a DNA molecule replicates. | |-----|---| [5] | | (c) | DNA codes for polypeptides in cells. Transfer RNA (tRNA) is involved in this process. | | | Describe the role of tRNA in the production of polypeptides in cells. | [3] | | | [Total: 10] |