Electrolysis, Electrode Potentials & Cells

Question Paper 1

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Electrochemistry
Sub-Topic	Electrolysis, Electrode Potentials & Cells
Paper Type	Theory
Booklet	Question Paper 1

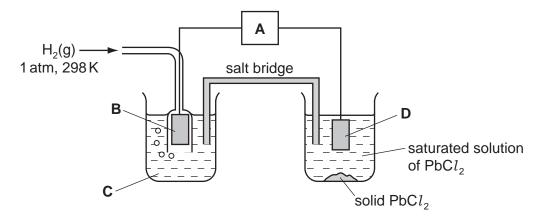
Time Allowed: 76 minutes

Score: /63

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%


1	(a)	(i)	State how the melting point and density of iron compare to those of calcium.
			melting point of iron:
			density of iron:
		(ii)	Explain why these differences occur.
			melting point:
			density:
			[4]
	(h)	The	رت following diagram shows the apparatus used to measure the standard electrode potential,
	(D)		of a cell composed of a Cu(II)/Cu electrode and an Fe(II)/Fe electrode.
		(i)	Finish the diagram by adding components to show the complete circuit. Label the components you add.
		(ii)	In the spaces below, identify or describe what the four letters A-D represent.
		(,	A
			В
			C
			D

	(iii)	Use the <i>Data Booklet</i> to calculate the E° for this cell.				
	(iv)	Predict how the size of the overall cell potential would change, if at all, as the concentration of solution C is increased. Explain your reasoning.				
		[8]				
(c)		e iron(II) complex <i>ferrous bisglycinate hydrochloride</i> is sometimes prescribed, in capsule m, to treat iron deficiency or anaemia.				
	A ca	apsule containing 500 mg of this iron(II) complex was dissolved in dilute H ₂ SO ₄ and titrated				
		n 0.0200 mol dm ⁻³ KMnO ₄ . 1 cm ³ of KMnO ₄ solution were required to reach the end point.				
	The	e equation for the titration reaction is as follows.				
		$5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$				
	(i)	Describe how you would recognise the end point of this titration.				
	(ii)	Calculate				
		• the number of moles of Fe ²⁺ in the capsule,				
		• the mass of iron in the capsule,				
		the molar mass of the iron(II) complex, assuming 1 mol of the complex contains 1 mo of iron.				

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2 Lead(II) chloride, $PbCl_2$, can be used in the manufacture of some types of coloured glass.

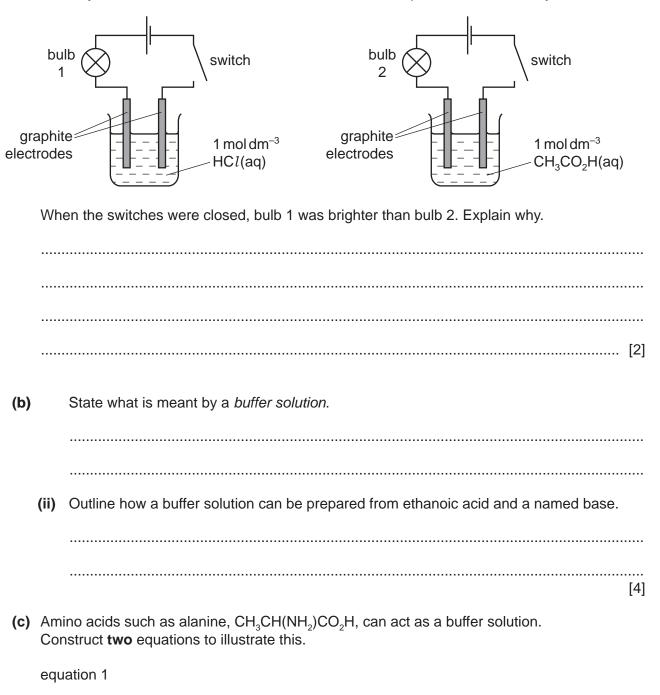
 $PbCl_2$ is only sparingly soluble in water. The $[Pb^{2+}]$ in a saturated solution of $PbCl_2$ can be estimated by measuring the cell potential, E_{cell} , of the following cell.

(a)	In the spaces below,	. identif	/ what the f	our letters	A-D ir	n the abov	e diagram	represent
-----	----------------------	-----------	--------------	-------------	--------	------------	-----------	-----------

Α	 B
С	 D
	ן דין

- **(b)** In a saturated solution of PbC l_2 , [PbC l_2 (aq)] = $3.5 \times 10^{-2} \, \text{mol dm}^{-3}$.
 - (i) The E° for the Pb²⁺/Pb electrode is -0.13 V. Predict the potential of the right-hand electrode in the diagram above. Indicate this by placing a tick in the appropriate box in the table below.

electrode potential/V	place one tick only in this column
-0.17	
-0.13	
-0.09	
0.00	


Explain your answer.	

	(ii)	Write an expression for the solubility product, K_{sp} , of PbC l_2 .
	(iii)	Calculate the value of $K_{\rm sp}$, including units.
		$K_{\rm sp}$ = units [5]
(c)		behaviours of ${\rm PbC}l_2$ and ${\rm SnC}l_2$ towards reducing agents are similar, but their behaviours ards oxidising agents are very different.
	(i)	Illustrate this comparison by quoting and comparing relevant $E^{\rm e}$ values for the two metals and their ions. Explain what the relative $E^{\rm e}$ values mean in terms of the ease of oxidation or reduction of these compounds.
	(ii)	Writing a balanced molecular or ionic equation in each case, suggest a reagent to carry out each of the following reactions.
		the reduction of ${\rm PbC}l_2$
		the oxidation of ${\rm SnC}\it{l}_{2}$
		[5]

(d)	Write an equation to represent the lattice energy of ${ m PbC}\it{l}_{2}$. Show state symbols.
(ii)	Use the following data, together with appropriate data from the $\it Data\ Booklet$, to calculate a value for the lattice energy of ${\rm PbC}\it{l}_{\it{2}}$.
	electron affinity of chlorine = $-349 \mathrm{kJ} \mathrm{mol}^{-1}$ enthalpy change of atomisation of lead = $+195 \mathrm{kJ} \mathrm{mol}^{-1}$ enthalpy change of formation of $\mathrm{PbC} l_2(\mathrm{s})$ = $-359 \mathrm{kJ} \mathrm{mol}^{-1}$
(iii)	$lattice\ energy =kJ\ mol^{-1}$ How might the lattice energy of PbC l_2 compare to that of PbBr $_2$? Explain your answer.
()	Thow might the lattice energy of 1 bot ₂ compare to that of 1 bbl ₂ : Explain your answer.
	[6]
	[Total: 20]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3 (a) The following circuits were set up using aqueous hydrochloric and aqueous ethanoic acids as electrolytes. Assume that the two circuits were identical apart from the electrolyte.

equation 2

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(d) Tartaric acid is present in many plants.

tartaric acid

(i) Tartaric acid has two dissociation constants, K_1 and K_2 , for which the p K_a values are 2.99 and 4.40.

Suggest equations showing the two dissociations that give rise to these pK_a values.

(ii) One stereoisomer of tartaric acid is shown.

Complete the diagrams showing two other stereoisomers of tartaric acid.

(a)	Wha	at is meant by the term standard electrode potential, SEP?
		[2]
(b)		w a fully labelled diagram of the apparatus you could use to measure the SEP of the $^{\text{-}}/\text{Fe}^{2\text{+}}$ electrode.
		[5]
(c)	The	reaction between Fe³+ ions and I⁻ ions is an equilibrium reaction.
	(1)	$2Fe^{3+}(aq) + 2I^{-}(aq) \rightleftharpoons 2Fe^{2+}(aq) + I_{2}(aq)$
	(1)	Use the Data Booklet to calculate the $E_{\text{cell}}^{\text{e}}$ f
	(ii)	Hence state, with a reason, whether there will be more products or more reactants at equilibrium.
((iii)	Write the expression for $K_{\!\scriptscriptstyle C}$ for this reaction, and state its units.
		$K_{c} =$
		units

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

An experiment was carried out using solutions of $Fe^{3+}(aq)$ and $I^{-}(aq)$ of equal concentrations. $100\,cm^3$ of each solution were mixed together, and allowed to reach equilibrium.

The concentrations at equilibrium of $Fe^{3+}(aq)$ and $I_2(aq)$ were as follows.

[Fe³⁺(aq)] =
$$2.0 \times 10^{-4} \,\text{mol dm}^{-3}$$

[I₂(aq)] = $1.0 \times 10^{-2} \,\text{mol dm}^{-3}$

(iv)	Use these data, together with the equation given in (c), to calculate the concentrations
	of Fe ²⁺ (aq) and I ⁻ (aq) at equilibrium.

$$[Fe^{2+}(aq)] = \dots mol dm^{-3}$$

$$[I^{-}(aq)] = \dots mol dm^{-3}$$

(v) Calculate the K_c for this reaction.

$$K_c = \dots$$
 [8]

[Total: 15]