Electrolysis, Electrode Potentials & Cells

Question Paper 2

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Electrochemistry
Sub-Topic	Electrolysis, Electrode Potentials & Cells
Paper Type	Theory
Booklet	Question Paper 2

Time Allowed: 80 minutes

Score: /66

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1	(a)	(i)	With the aid of a fully-labelled diagram, describe the standard hydrogen electrode.
		(ii)	Use the <i>Data Booklet</i> to calculate the standard cell potential for the reaction between Cr^{2+} ions and $Cr_2O_7^{2-}$ ions in acid solution, and construct a balanced equation for the reaction.
			E e \
			equation
		(iii)	Describe what you would see if a blue solution of Cr^{2+} ions was added to an acidified solution of $Cr_2O_7^{2-}$ ions until reaction was complete.
			[8]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b)	Α	buffer	solution	is	to	be	made	using	1.00 mol dm ⁻³	ethanoic	acid,	CH ₃ CO ₂ H,	and
	1.00 mol dm ⁻³ sodium ethanoate, CH ₃ CO ₂ Na.												

Calculate to the nearest 1 cm³ the volumes of each solution that would be required to make 100 cm³ of a buffer solution with pH5.50.

Clearly show all steps in your working.

 $K_a (CH_3CO_2H) = 1.79 \times 10^{-5} \text{ mol dm}^{-3}$

		volume of $1.00 \mathrm{mol}\mathrm{dm}^{-3}\mathrm{CH_3CO_2H} = \ldots \mathrm{cm}$	า ³
		volume of 1.00 mol dm ⁻³ $CH_3CO_2Na = \dots cm$	ո ³ 4]
(c)	Wri	te an equation to show the reaction of this buffer solution with each of the following.	
	(i)	added HC1	
	(ii)		 2]

(d) Choose one reaction in organic chemistry that is catalysed by an acid, and write the

structural formulae of the reactants and products in the boxes below.

[3]

2	(a)	What is meant by the term standard electrode potential, SEP?
		[2]
	(b)	Draw a fully labelled diagram of the apparatus you could use to measure the SEP of the Fe^{3+}/Fe^{2+} electrode.
		[5]
	(c)	The reaction between Fe^{3+} ions and I^- ions is an equilibrium reaction.
	()	$2Fe^{3+}(aq) + 2I^{-}(aq) \implies 2Fe^{2+}(aq) + I_{2}(aq)$
		(i) Use the Data Booklet to calculate the E_{cell}^{e} f
		(ii) Hence state, with a reason, whether there will be more products or more reactants at equilibrium.
	(iii) Write the expression for K_c for this reaction, and state its units.
		K_{c} =
		units

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

An experiment was carried out using solutions of $Fe^{3+}(aq)$ and $I^{-}(aq)$ of equal concentrations. $100\,cm^3$ of each solution were mixed together, and allowed to reach equilibrium.

The concentrations at equilibrium of $Fe^{3+}(aq)$ and $I_2(aq)$ were as follows.

$$[Fe^{3+}(aq)] = 2.0 \times 10^{-4} \,\text{mol dm}^{-3}$$

 $[I_2(aq)] = 1.0 \times 10^{-2} \,\text{mol dm}^{-3}$

(iv)	Use these data, together with the equation given in (c), to calculate the concentrations
	of Fe ²⁺ (aq) and I ⁻ (aq) at equilibrium.

$$[Fe^{2+}(aq)] = \dots mol dm^{-3}$$

$$[I^{-}(aq)] = \dots mol dm^{-3}$$

(v) Calculate the K_c for this reaction.

$$K_c = \dots$$
 [8]

[Total: 15]

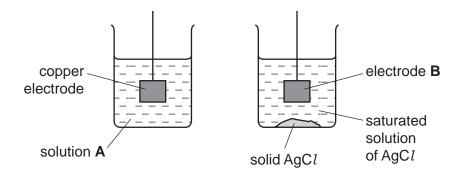
3	Chl	lorine gas is manufactured by the electrolysis of brine using a diaphragm cell.						
	(a)	(i)	Write half-equations, including state symbols, for the reactions occurring at each of the electrodes of a diaphragm cell.					
			anode					
			cathode					
		(ii)	In the diaphragm cell, the anode is made of titanium and the cathode is made of steel.					
			Suggest why steel is never used for the anode.					
			[3]					
	(b)		orine is very reactive and will form compounds by direct combination with many ments.					
		sod	scribe what you would see when chlorine is passed over separate heated samples of ium and phosphorus. each case write an equation for the reaction.					
		sod	ium					
		pho	osphorus					
			[4]					

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) Chlorine reacts with aqueous sodium hydroxide in two different ways, depending on the conditions used. In each case, water, sodium chloride and one other chlorine-containing compound are formed.

For **each** condition below, give the formula of the **other** chlorine-containing compound and state the oxidation number of chlorine in it.

condition	formula of other chlorine-containing compound	oxidation number of chlorine in this compound
cold dilute NaOH(aq)		
hot concentrated NaOH(aq)		


[4]

(d)	Magnesium chloride, $\mathrm{MgC}l_2$, and silicon tetrachloride, $\mathrm{SiC}l_4$, each dissolve in or reactivith water.
	Suggest the approximate pH of the solution formed in each case.
	$MgC\mathit{l}_{2}$ $SiC\mathit{l}_{4}$
	Explain, with the aid of an equation, the difference between the two values.
	[5]

[Total: 16]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4 (a) The diagram below shows an incomplete experimental set-up needed to measure the E_{cell} of a cell composed of the standard Cu²⁺/Cu electrode and an Ag⁺/Ag electrode.

(i)	State	the	chemical	composition	ı of
•	•,	Otato		onionnioai	COMPOSITION	

solution A,	 	 	 	
·				
electrode B				

(ii) Complete the diagram to show the whole experimental set-up.

[4]

(b) The above cell is not under standard conditions, because the [Ag⁺] in a saturated solution of AgC l is much less than 1.0 mol dm⁻³. The $E_{\rm electrode}$ is related to [Ag⁺] by the following equation.

equation 1
$$E_{\text{electrode}} = E_{\text{electrode}}^{\text{e}} + 0.06 \log[\text{Ag}^{+}]$$

(i) Use the *Data Booklet* to calculate the E_{cell}^{e} if the cell was operating under standard conditions.

$$E_{\text{cell}}^{\Theta} = \dots V$$

In the above experiment, the E_{cell} was measured at +0.17V.

(ii) Calculate the value of $E_{\text{electrode}}$ for the Ag⁺/Ag electrode in this experiment.

.....

(iii) Use equation 1 to calculate [Ag+] in the saturated solution.

$$[Ag^+] = \dots mol dm^{-3}$$

(c)		Write an expression for K_{sp} of silver sulfate, Ag_2SO_4 , including units.
		K_{sp} = units
		ng a similar experimental set-up to that illustrated opposite, it is found that [Ag $^+$] in a urated solution of Ag $_2$ SO $_4$ is 1.6 \times 10 $^{-2}$ mol dm $^{-3}$.
	(ii)	Calculate the value of $K_{\!_{\mathrm{Sp}}}$ of silver sulfate.
		$K_{sp} =$ [3]
(d)		scribe how the colours of the silver halides, and their relative solubilities in NH $_3$ (aq), a be used to distinguish between solutions of the halide ions C l^- , Br $^-$ and I $^-$.
		[4]
(e)	Des	scribe and explain the trend in the solubilities of the sulfates of the elements in Group II.
		[4]

[Total: 18]