Electrolysis, Electrode Potentials & Cells

Question Paper 5

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Electrochemistry
Sub-Topic	Electrolysis, Electrode Potentials & Cells
Paper Type	Theory
Booklet	Question Paper 5

Time Allowed: 66 minutes

Score: /55

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 A student decided to determine the value of the Faraday constant by an electrolysis experiment. The following incomplete diagram shows the apparatus that was used.

(a)	(i)	Apart from connecting wires, what two additional pieces of equipment are needed for this experiment?
	(ii)	Complete the diagram, showing additional equipment connected in the circuit, and showing the powerpack connected to the correct electrodes.
	(iii)	List the measurements the student would need to make in order to use the results to calculate a value for the Faraday constant.
		[7]
(b)	(i)	Using an equation, state the relationship between the Faraday constant, F , the Avogadro constant, L , and the charge on the electron, e .
	(ii)	The value the student obtained was: 1 Faraday = 9.63×10^4 Coulombs
		Use this value and your equation in (b)(i) to calculate the Avogadro constant (take the charge on the electron to be 1.60×10^{-19} Coulombs)
		[2]
		[2]

[Total: 9]

(a)	Calculate the approximate number of silver ions contained in a grain of AgBr of mass $2.5 \times 10^{-12}\mathrm{g}$.
(b)	AgBr is only sparingly soluble in water. The [Ag $^+$] in a saturated solution of AgBr can be estimated by measuring the $E_{\rm cell}$ of the following cell.
H₂(g),	1 atm, 298 K salt bridge [Ag ⁺ (aq)] = x mol dm ⁻³
	(i) In the spaces below, identify what the four letters ${\bf A}-{\bf D}$ in the above diagram represent.
	A C
	B
	(ii) Predict how the potential of the right hand electrode might vary as [Ag+] is decreased.
	In its saturated solution, [AgBr(aq)] = 7.1×10^{-7} mol dm ⁻³ .
	(iii) Write an expression for the solubility product of AgBr, and calculate its value, including units.

(c)	(i)	Write a chemical equation representing the lattice energy of AgBr.
	(ii)	Use the following data to calculate a value for the lattice energy of AgBr(s).
	(,	first ionisation energy of silver = +731 kJ mol ⁻¹ electron affinity of bromine = -325 kJ mol ⁻¹ enthalpy change of atomisation of silver = +285 kJ mol ⁻¹ enthalpy change of atomisation of bromine = +112 kJ mol ⁻¹ enthalpy change of formation of AgBr(s) = -100 kJ mol ⁻¹
	(iii)	How might the lattice energy of AgCl compare to that of AgBr? Explain your answer.
		[4]
-		graphy a bromide ion absorbs a photon and releases an electron which reduces a to a silver atom.
		$Br^- \longrightarrow Br + e^-$
		$Ag^+ + e^- \rightarrow Ag$
(d)		dict whether it would require more energy or less energy to initiate this process in gCl emulsion, compared to a AgBr emulsion. Explain your answer.
		[1]

[Total: 14]

3	low elec	den	sium is used extensively in the form of alloys as a constructional material due to its sity $(1.7\mathrm{gcm^{-3}},\ \mathrm{compared}\ \mathrm{to}\ 7.8\mathrm{gcm^{-3}}\ \mathrm{for}\ \mathrm{iron})$. It is usually prepared by the sis of magnesium chloride, $\mathrm{MgC}l_2$, at a temperature a little above its melting point of
	(a)	_	gest the half-equation that represents the production of magnesium at the cathode ing the electrolysis.
			[1]
	(b)	Wh	at will be the product at the other electrode?
			[1]
	(c)		gest two properties of its atoms that could explain why magnesium is less dense n iron.
			[2]
			he reasons the melting point of magnesium chloride is quite high is because it has a h lattice energy.
	(d)	(i)	Explain the term <i>lattice energy</i> .
		(ii)	Write a balanced equation including state symbols to represent the lattice energy of magnesium chloride.
			[4]
	(e)	_	ggest, with an explanation in each case, how the lattice energy of magnesium oride might compare with that of
		(i)	sodium chloride, NaCl,
		(ii)	calcium chloride, CaCl ₂ .

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(f) Use the following data to calculate a value for the lattice energy of sodium chloride.

 $\begin{array}{rcl} \Delta H_{\rm f} \, ({\rm NaC} l) & = & -411 \, {\rm kJ \, mol^{-1}} \\ \Delta H_{\rm at} \, ({\rm Na}) & = & 107 \, {\rm kJ \, mol^{-1}} \\ \Delta H_{\rm at} \, ({\rm C} l) & = & 122 \, {\rm kJ \, mol^{-1}} \\ {\rm first \, ionisation \, energy \, of \, Na} & = & 494 \, {\rm kJ \, mol^{-1}} \\ {\rm electron \, affinity \, of \, C} l & = & -349 \, {\rm kJ \, mol^{-1}} \end{array}$

lattice energy of NaCl =kJ mol⁻¹ [3]

[Total: 15]

Save My Exams! - The Home of Revision

and the outlets.

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

(a) (i) Describe, with the aid of a fully labelled diagram, the industrial electrolysis of brine

(aqueous NaC1). State what the electrodes are made of and show clearly the inlet

(ii)	Write equations for the reactions at each electrode, giving state symbols.
	anode
	cathode
(iii)	Explain in terms of changes in oxidation number why redox processes take place at the electrodes.
	anode
	cathode
(iv)	Name the chemical which is produced in solution by this electrolysis.
(v)	Suggest two large scale uses of this chemical.
	[10]

(b)	Hydrochloric acid is manufactured by burning the hydrogen formed in this electrolysis chlorine and dissolving the product in water.		
	(i)	Construct an equation for the burning of hydrogen in chlorine.	
	(ii)	When the product of (i) dissolves in water there is a change in bonding. Explain with the aid of an equation what change in bonding has occurred.	
		[2]	
(c)	Des	scribe, with the aid of equations including state symbols, what happens when	
	(i)	hydrochloric acid is added to aqueous silver nitrate,	
	(ii)	an excess of aqueous ammonia is added to the resulting mixture.	
		[5]	
		[Total : 17]	