Electrolysis, Electrode Potentials & Cells

Question Paper 7

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Electrochemistry
Sub-Topic	Electrolysis, Electrode Potentials & Cells
Paper Type	Theory
Booklet	Question Paper 7

Time Allowed: 66 minutes

Score: /55

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

(ii)	Write equations to show how the hydrogencarbonate ion, HCO ₃ -, controls the pH of bloo
(iii)	A solution containing both Na_2HPO_4 and NaH_2PO_4 is commonly used as a buffer solution. The following equilibrium is present in the solution.
	$H_2PO_4^{-}(aq) \iff HPO_4^{2-}(aq) + H^+(aq)$ $K_a = 6.2 \times 10^{-8} \text{mol dm}^{-3}$
	Calculate the pH of a buffer solution made by mixing $100\mathrm{cm^3}$ of $0.5\mathrm{moldm^{-3}}$ $\mathrm{Na_2HPO_4}$ at $100\mathrm{cm^3}$ of $0.3\mathrm{moldm^{-3}}$ $\mathrm{NaH_2PO_4}$.
(b) Silv	ver phosphate, Ag₃PO₄, is sparingly soluble in water.
(i)	Write an expression for the solubility product, $K_{\rm sp}$, of ${\rm Ag_3PO_4}$, and state its units.
	pH =
	\mathcal{K}_{sp} =
(ii)	The numerical value of $K_{\rm sp}$ is 1.25 \times 10 ⁻²⁰ at 298 K. Use this value to calculate [Ag ⁺ (aq)] a saturated solution of Ag ₃ PO ₄ .

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c)	The half-equation for the redox reaction between phosphoric(III) acid and phosphoric(V) acid is
	shown.

$$H_3PO_4(aq) + 2H^+(aq) + 2e^- \rightleftharpoons H_3PO_3(aq) + H_2O(I)$$
 $E^a = -0.28 \text{ V}$

Find suitable data from the *Data Booklet* to write an equation for the reaction between H_3PO_3 and $Fe^{3+}(aq)$ ions, and calculate the E_{cell}^{θ} for the reaction.

equation:

$$E_{\text{cell}}^{\Theta} = \dots V [2]$$

[Total: 12]

2 (a) In this question, K, L and M refer to a halogen atom or halide ion. For each part question, read the information and complete the answer lines below.			
		(i)	When concentrated sulfuric acid is added to solid Na \mathbf{K} , white fumes are produced that turn damp blue litmus paper red. No other colour changes are observed.
			identity of K =
			equation for reaction
			explanation of observation
			[3]
		(ii)	When silver nitrate solution is added to an aqueous solution of NaL, a precipitate forms that remains after the addition of concentrated ammonia solution.
			identity of L =
			colour of precipitate
			equation for reaction[3]
		(iii)	\mathbf{M}_2 is a liquid at room temperature with a boiling point higher than that of chlorine but lower than that of iodine.
			identity of M =
			explanation

(b) The diagram below is a simplified representation of a diaphragm cell.

(i) Identify each o	f the products.
---------------------	-----------------

В	
C.	
_	
D	
	[3]

(ii) Give the equations for the two electrode reactions.

anode	
cathode	
	[2]

[Total: 13]

3

(a)	Cor	mplete the following electronic configuration of the Cu ²⁺ ion.	
	1s ²	2s ² 2p ⁶	[1]
(b)		a free, gas-phase transition metal ion, the d-orbitals all have the same energy, ben the ion is in a complex the orbitals are split into two energy levels.)U
	(i)	Explain why this happens.	
	(ii)	How does this splitting help to explain why transition metal complexes are ofto coloured?	er
	(iii)	Why does the colour of a transition metal complex depend on the nature of the ligands surrounding the transition metal ion?	he
			[5
(c)		w a fully-labelled diagram of the apparatus you could use to measure the E° of a coposed of the Fe ³⁺ /Fe ²⁺ electrode and the Cu ²⁺ /Cu electrode.	el

(d)		$e^{-}E^{\circ}$ for Cu ²⁺ /Cu is +0.34 V. When NH ₃ (aq) is added to the electrode solution, the etrode changes.	
	(i) Describe the type of reaction taking place between Cu ²⁺ (aq) and NH ₃ (aq).		
	(ii)	Write an equation for the reaction.	
	(iii)	Describe the change in the colour of the solution.	
	(iv)	Predict and explain how the $E_{\rm electrode}$ might change on the addition of NH $_{\rm 3}$ (aq).	
		[4]	
(e)		aling's reagent is an alkaline solution of Cu^{2+} ions complexed with tartrate ions. It is d in organic chemistry to test for a particular functional group.	
	(i)	Name the functional group involved.	
	(ii)	Describe the appearance of a positive result in this test.	
	(iii)	Write an equation for the reaction between Cu²+ and OH⁻ ions and a two-carbon compound containing the functional group you named in (i).	
		[3]	
(f)	son Cal sod	olution containing a mixture of tartaric acid and its sodium salt is used as a buffer in the pre-prepared food dishes. Coulate the pH of a solution containing $0.50\mathrm{moldm^{-3}}$ of tartaric acid and $0.80\mathrm{moldm^{-3}}$ lium tartrate. Startaric acid) = $9.3\times10^{-4}\mathrm{moldm^{-3}}$]	
		pH =	
		[2]	

4	(a)	What do you understand by the term standard electrode potential?
		[2]
	(b)	By reference to relevant E^{\oplus} data in the <i>Data Booklet</i> , explain how the halogen/halide electrode potentials relate to the relative reactivity of the halogens as oxidising agents.
		[2]
	(c)	Use data from the <i>Data Booklet</i> to construct redox equations, and calculate the standard cell potentials, for the reactions between
		(i) Acidified H ₂ O ₂ (aq) and KI(aq),
		(ii) $Cl_2(aq) + SO_2(aq)$.
		[4]
	(d)	Use data from the <i>Data Booklet</i> to predict the likely product of the reaction between I_2 (aq) and tin metal, writing a balanced equation for the reaction.
		[2]
		[Total: 10]