For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Deformation of Solids

Question paper 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Deformation of Solids
Sub Topic	
Paper Type	Theory
Booklet	Question paper 1

Time Allowed: 59 minutes

Score: /49

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 A spring is kept horizontal by attaching it to points A and B, as shown in Fig. 4.1.

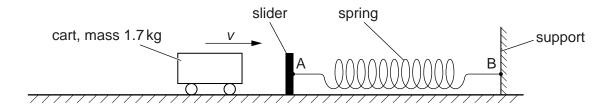


Fig. 4.1

Point A is on a movable slider and point B is on a fixed support. A cart of mass 1.7 kg has horizontal velocity v towards the slider. The cart collides with the slider. The spring is compressed as the cart comes to rest. The variation of compression x of the spring with force F exerted on the spring is shown in Fig. 4.2.

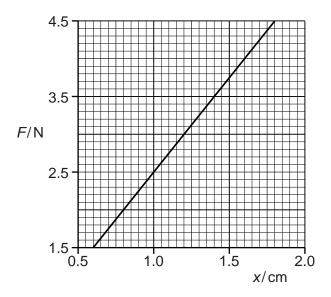


Fig. 4.2

Fig. 4.2 shows the compression of the spring for $F = 1.5\,\mathrm{N}$ to $F = 4.5\,\mathrm{N}$. The cart comes to rest when F is 4.5 N.

(a) Use Fig. 4.2 to

(i)	show that the compression of the spring obeys Hooke's law,			
	Tr.			

(ii)	determine the spring constant of the spring,
	spring constant = Nm ⁻¹ [2]
(iii)	determine the elastic potential energy $E_{\rm p}$ stored in the spring due to the cart being brought to rest.
	E _P = J [3]
	culate the speed ν of the cart as it makes contact with the slider. Assume that all the etic energy of the cart is converted to the elastic potential energy of the spring.
	speed = m s ⁻¹ [2]

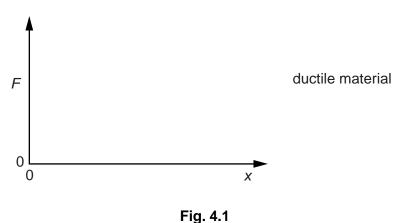
Fig. 4.1 shows the values obtained in an experiment to determine the Young modulus *E* of a metal 2 in the form of a wire.

quantity	value	instrument
diameter d	0.48 mm	
length 1	1.768 m	
load F	5.0 N to 30.0 N in 5.0 N steps	
extension e	0.25 mm to 1.50 mm	

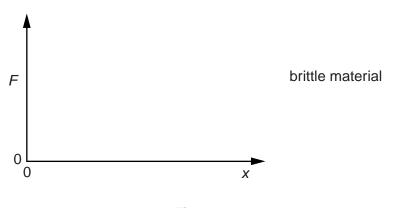
Fig. 4.1

(a)	(i)	Complete Fig. 4.1 with the name of an instrument that could be used to measure each of the quantities. [3]
	(ii)	Explain why a series of values of <i>F</i> , each with corresponding extension <i>e</i> , are measured.
		[1]
(b)	•	lain how a series of readings of the quantities given in Fig. 4.1 is used to determine the ng modulus of the metal. A numerical answer for E is not required.
		[2]

3	(a)	Compare the	molecular	motion	of a	liquid	with
J	la)	Compare me	IIIUI c cuiai	111011011	u a	IIQUIU	WILLI


a	so	lid	١,
	a	a so	a solid

(ii)


(c)

	 	 [2]
a gas.		

(b) (i) A ductile material in the form of a wire is stretched up to its breaking point. On Fig. 4.1, sketch the variation with extension *x* of the stretching force *F*.

(ii) On Fig. 4.2, sketch the variation with extension *x* of the stretching force *F* for a brittle material up to its breaking point.

Fig. 4.2 [1]

Describe a similarity and a difference between ductile and brittle materials.
similarity:
difference:

[1]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4	(a)	Define the Young modulus.
		[1

(b) Two wires P and Q of the same material and same original length l_0 are fixed so that they hang vertically, as shown in Fig. 5.1.

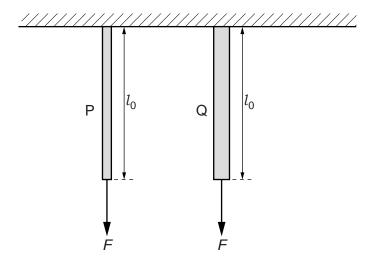


Fig. 5.1 (not to scale)

The diameter of P is d and the diameter of Q is 2d. The same force F is applied to the lower end of each wire.

Show your working and determine the ratio

(i) $\frac{\text{stress in P}}{\text{stress in Q}}$,

(ii) $\frac{\text{strain in P}}{\text{strain in Q}}$

5 A spring hangs vertically from a point P, as shown in Fig. 4.1.

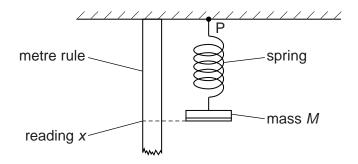


Fig. 4.1

A mass M is attached to the lower end of the spring. The reading x from the metre rule is taken, as shown in Fig. 4.1. Fig. 4.2 shows the relationship between x and M.

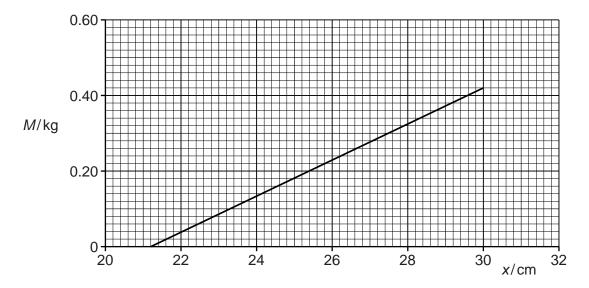


Fig. 4.2

(a)	Explain how the apparatus in Fig. 4.1 may be used to determine the load on the spring at the elastic limit.	е
	[2	2]
(b)	State and explain whether Fig. 4.2 suggests that the spring obeys Hooke's law.	
		21

(c) Use Fig. 4.2 to determine the spring constant, in N m⁻¹, of the spring.

spring constant = N m⁻¹ [3]

6	Ene	rgy is stored in a metal wire that is extended elastically.		
	(a)	Explain what is meant by extended elastically.		
			[2]	
	(b)	Show that the SI units of energy per unit volume are kg m ⁻¹ s ⁻² .		
			[2]	
	(c)	For a wire extended elastically, the elastic energy per unit volume X is given by		
		$X = C\varepsilon^2 E$		
		where C is a constant,		
		arepsilon is the strain of the wire, and $arepsilon$ is the Young modulus of the wire.		
		Show that C has no units.		

7 (a)		Define					
		(i)	stress,				
		(ii)	strain.				
	(b)	The wire	Young modulus of the metal of a wire is 0.17 TPa. The cross-sectional area of the is 0.18 mm ² .				
			wire is extended by a force <i>F</i> . This causes the length of the wire to be increased by 95%.				
		Cald	culate				
		(i)	the stress,				
			stress = Pa [4]				
		(ii)	the force F .				
		(,					
			F= N [2]				