Equilibria

Question Paper 6

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Equilibria
Sub-Topic	
Paper Type	Theory
Booklet	Question Paper 6

Time Allowed: 71 minutes

Score: /59

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

Ibuprofen is one of the most commonly used non-steroidal anti-inflammatory drugs, used to treat chronic arthritic pain caused by inflammation of the joints.

$$\begin{array}{c|c} CH_3 \\ CH_3 \\ CH \\ CH_2 \\ \end{array}$$

		ibuprofen
(a)	(i)	Draw a circle around any chiral centre(s) in the above structure.
	(ii)	Write down the molecular formula of ibuprofen.
	Calculate the $M_{\rm r}$ of ibuprofen and use it to calculate how many grams are needed to make 100 cm 3 of a 0.15 mol dm $^{-3}$ solution.	
	(iv)	Vigorous oxidation of ibuprofen produces a dibasic acid $\bf A$. A solution containing 0.10 g of $\bf A$ required 12.0 cm ³ of 0.10 mol dm ⁻³ NaOH for neutralisation.
		Suggest a structure for A , showing your working.
(b)	The	$K_{\rm a}$ value for ibuprofen is $6.3\times10^{-6}{\rm moldm^{-3}}$.
,		Write an expression for K_a .
	()	' a
	(ii)	Use the $K_{\rm a}$ value to calculate the pH of a 0.15 mol dm ⁻³ solution of ibuprofen.

(c)	(c) To avoid problems with digestive irritation over a long period of use, research is carried out into ways of administering ibuprofen using skin patches. For this compound is dissolved in a hydrophilic gel which acts as a buffer.		
	(i)	What do you understand by the term buffer?	
		buffer used in the pharmaceutical preparation is a solution containing $\rm Na_2HPO_4$ $\rm NaH_2PO_4$. These salts contain the $\rm HPO_4^{2-}$ and $\rm H_2PO_4^{-}$ ions respectively.	
	(ii)	Write equations to show how this buffer reacts with	
H ⁺ ions,			
		OH ⁻ ions.	
	(iii)	A buffer solution containing equal concentrations of the two sodium phosphate salts has a pH of 7.20.	
		Calculate the pH of a pharmaceutical preparation containing 0.002 mol dm $^{-3}$ of Na $_2$ HPO $_4$ and 0.005 mol dm $^{-3}$ of NaH $_2$ PO $_4$.	

[5]

[Total: 15]

2

2	Sulp	ohur and its compounds are found in volcanoes, in organic matter and in minerals.
	Con	phuric acid, an important industrial chemical, is manufactured from sulphur by the tact process. There are three consecutive reactions in the Contact process which are ential.
	(a)	Write a balanced equation (using \rightleftharpoons where appropriate) for each of these reactions in the correct sequence.
		1
		2
		3[4]
	(b)	What catalyst is used?
		[1]
		lrogen sulphide, $\rm H_2S$, is a foul-smelling compound found in the gases from volcanoes. Irogen sulphide is covalent, melting at -85 °C and boiling at -60 °C.
	(c)	(i) Draw a 'dot-and-cross' diagram to show the structure of the H ₂ S molecule.
		(ii) Predict the shape of the H ₂ S molecule.
		(iii) Oxygen and sulphur are both in Group VI of the Periodic Table.
		Suggest why the melting and boiling points of water, $\rm H_2O$, are much higher than those of $\rm H_2S$.
		[N]

Hydrogen sulphide burns with a blue flame in an excess of oxygen to form sulphur dioxide and water.

(d) (i)	Write a balanced equation for the complete combustion of H ₂ S.
(ii)	What is the change in the oxidation number of sulphur in this reaction?
	from to
(iii)	What volume of oxygen, measured at room temperature and pressure, is required for the complete combustion of 8.65 g of $\rm H_2S$? Give your answer to two decimal places.
	[5]
Hydroge few S ²⁻ i	n sulphide is a weak diprotic (dibasic) acid. Its solution in water contains ${\sf HS}^-$ and a ons.
(e) (i)	What is meant by the term weak acid?
(ii)	Write an equation, with state symbols, for the ${\bf first}$ ionisation of ${\rm H_2S}$ when it dissolves in water.
	[3]
	[Total: 17]

acid	$K_{\rm a}$ / mol dm $^{-3}$	
CH ₃ CO ₂ H	1.8 × 10 ⁻⁵	
CICH ₂ CO ₂ H	1.4 × 10 ⁻³	
Cl ₂ CHCO ₂ H	5.5 × 10 ⁻²	
he pH of a 0.100 moldm	n ⁻³ solution of CICH ₂ CO) ₂ H.
	CH ₃ CO ₂ H CICH ₂ CO ₂ H CI ₂ CHCO ₂ H and explain the trend in a	$\begin{array}{ccc} \text{CH}_{3}\text{CO}_{2}\text{H} & 1.8\times10^{-5} \\ \\ \text{ClCH}_{2}\text{CO}_{2}\text{H} & 1.4\times10^{-3} \\ \end{array}$

[5]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) The acid CICH₂CO₂H features in the industrial synthesis of the important weedkiller 2,4-D.

(i) Suggest a possible reagent for reaction I.

.....

(ii) What type of reaction is

reaction I,

reaction II?

(iii) Describe a test (reagents and observations) that would distinguish phenol from compound **A**.

compound A

observation with compound A

[5]

[Total: 11]

4	the	Ammonia, $\mathrm{NH_3}$, is a colourless, pungent-smelling gas which has been known to man from the beginning of recorded time. It is given off from urine such as that on a wet nappy from a baby. The nitrogen-containing substance in urine is urea, $\mathrm{CO(NH_2)_2}$, and this decomposes by hydrolysis into ammonia and another colourless gas.					
	(a)	Construct an equation for the hydrolysis of aqueous urea.					
			monia was named after the shrine of Jupiter Ammon which was near the Egyptian- van border. In ancient times ammonia was obtained by distilling camel dung.				
	(b)	Nov	v ammonia is synthesised from its elements in the Haber Process.				
		(i)	Write an equation for this process.				
		(ii)	State the three usual operating conditions of the Haber Process.				
		(iii)	State two modern commercial uses of ammonia.				
			[4]				
	(c)		$0\mathrm{dm^3}$ of ammonia gas were dissolved in water to form $200\mathrm{cm^3}$ of aqueous alkali at m temperature and pressure.				
		(i)	Use the <i>Data Booklet</i> to calculate how many moles of NH ₃ (g) were dissolved.				
		(ii)	Write the equation for the neutralisation of aqueous ammonia by dilute sulphuric acid.				

	(iii)	Calcuthe 2	ulate the volume of 0.50 mol c 00 cm ³ of aqueous ammonia.	lm ⁻³ sulphuric acid that is re	quired to neutralise
					[3]
(d)			es below, draw diagrams to sl m ion. Clearly show the bond		nia molecule and an
	am		Them eleany eller the sent	angios on your diagrams.	1
			ammania	ammonium ion	
			ammonia	ammonium ion	[4]
(e)	Am	monia	does not burn in air but will b	urn in pure oxygen.	
	(i)	Balar	nce the equation for this react	ion:	
			$NH_3(g) + O_2(g)$	\longrightarrow $N_2(g) + H_2O$	(g)
	(ii)	Use	oxidation numbers to explain v	why this is a redox reaction.	
					[Total : 16]