Reaction Kinetics

Question Paper 1

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Reaction Kinetics
Sub-Topic	
Paper Type	Theory
Booklet	Question Paper 1

Time Allowed: 60 minutes

Score: /50

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 (a) The oxidation of nitrogen(II) oxide is shown in the equation.

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

The initial rate of this reaction was measured, starting with different concentrations of the two reactants. The following results were obtained.

experiment number	[NO] /mol dm ⁻³	$[{ m O_2}]$ /mol dm $^{-3}$	initial rate /moldm ⁻³ s ⁻¹
1	0.032	0.012	4.08 × 10 ⁻³
2	0.032	0.024	8.15 × 10 ⁻³
3	0.064	0.024	3.28 × 10 ⁻²
4	0.096	0.036	

(i)	Use the data in the table to determine the order with respect to each reactant. Show your reasoning.
(ii)	Calculate the initial rate in experiment 4. Give your answer to two significant figures.
	initial rate = mol dm ⁻³ s ⁻¹
iii)	Write the rate equation for this reaction.
iv)	Use the results of experiment 1 to calculate the rate constant, k , for this reaction. Include the units of k .
	rate constant, <i>k</i> = units units
	[6]

(b)	On the following axes
	 draw two Boltzmann distribution curves, at two different temperatures, T₁ and T₂ (T₂ > T₁), label the curves and the axes.
	(ii) State and explain, using your diagram, the effect of increasing temperature on the rate of reaction.
	[5]
(c)	The compound nitrosyl fluoride, NOF, can be formed by the following reaction.
	$2NO(g) + F_2(g) \rightleftharpoons 2NOF(g)$
	The rate is first order with respect to NO and F ₂ . The reaction mechanism has two steps.
	Suggest equations for the two steps of this mechanism, stating which is the rate determining slower step.

.....[2]

[Total: 13]

•	e initial rate of th ctants.	iis reaction was	s measured, sta	arting with diffe	rent concentrations o
The	e following resul	lts were obtain	ed.		
	experiment number	[BrO ₃ -] /mol dm-3	[Br ⁻] /moldm ⁻³	[H ⁺] /mol dm ⁻³	initial rate /moldm ⁻³ s ⁻¹
	1	0.040	0.020	0.50	2.64 × 10 ⁻⁴
	2	0.040	0.020	1.00	1.06 × 10 ⁻³
	3	0.040	0.080	0.50	1.06 × 10 ⁻³
	4	0.080	0.020	0.50	5.21 × 10 ⁻⁴
	reasoning.				
	reasoning.				
(ii)	Write the rate	equation for th	is reaction.		
(ii)	Write the rate	s of experimen			ant, <i>k</i> , for this reaction

[Total: 8]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3	Alcohols such as methanol, CH ₃ OH, are considered to be possible replacements for fossi
	fuels because they can be used in car engines.

(a)	Define, with the aid of an equation which includes state symbols, the standard enthalpy
	change of combustion, ΔH_c^{e} , for methanol at 298 K.

equation	
definition	
	[3]

Methanol may be synthesised from carbon monoxide and hydrogen. Relevant ΔH_c^{\bullet} values for this reaction are given in the table below.

compound	$\Delta H_{\rm c}^{\rm e}/{\rm kJmol^{-1}}$
CO(g)	-283
H ₂ (g)	-286
CH ₃ OH(g)	-726

(b) Use these values to calculate $\Delta H_{\text{reaction}}^{\text{e}}$ for the synthesis of methanol, using the following equation. Include a sign in your answer.

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$$

$$\Delta H_{\text{reaction}}^{\bullet} = \dots \text{kJ mol}^{-1}$$

(c)	The opera	ating con	ditions for this reaction are as follows.
	press	sure	200 atmospheres (2 × 10 ⁷ Pa)
	temp	erature	600 K
	catal	yst	oxides of Cr, Cu, and Zn
	In the spa		w, explain how each of these conditions affects the rate of formation
	pressure		
	temperati	ure	
	catalyst		
			[6]

[Total: 12]

(a)	Suggest a 'do	t-and-cross' elect	ronic structure for	nitrogen monoxide.
(ii)		change of format ge for the followin	-	noxide is +90 kJ mol ⁻¹ . Wha
		2NO(g)	\rightarrow N ₂ (g) + O ₂ (g)	$\Delta H_{\rm r} = \dots$
(iii)	Explain why n	itrogen monoxide	is formed in the c	ar engine.
' b) At	800 K. nitrogen	monoxide reacts		energy =l
	800 K, nitrogen uation I			cording to the following equ
eq:	uation I e following tablessures of the re	2H ₂ (g) + 2NO(e shows how the eagents.	with hydrogen acc g) \rightarrow 2H ₂ O(g) + e initial rate of this	cording to the following equivalent $N_2(g)$ s reaction depends on the
eq:	uation I e following tablessures of the re experiment	$2H_2(g) + 2NO(g)$ e shows how the eagents.	with hydrogen acc g) $\rightarrow 2H_2O(g) + e$ initial rate of this p(NO)/atm	cording to the following equal $N_2(g)$ s reaction depends on the initial rate/atm s ⁻¹
eq:	uation I e following tablessures of the re experiment	$2H_2(g) + 2NO(g)$ e shows how the eagents. $p(H_2)/atm$ 0.64	with hydrogen acc g) \rightarrow 2H ₂ O(g) + e initial rate of this p(NO)/atm 1.60	cording to the following equal $N_2(g)$ initial rate/atm s ⁻¹ 1.50×10^{-7}
eq:	uation I e following tablessures of the re experiment	$2H_2(g) + 2NO(g)$ e shows how the eagents.	with hydrogen acc g) $\rightarrow 2H_2O(g) + e$ initial rate of this p(NO)/atm	cording to the following equal $N_2(g)$ s reaction depends on the initial rate/atm s ⁻¹

.....

(ii)	Write down the rate equation and the units of the rate constant.	
The	e following mechanism has been put forward for this	s reaction.
	step 1 NO + NO \rightarrow N ₂ O + O step 2 H ₂ + O \rightarrow H ₂ O step 3 H ₂ + N ₂ O \rightarrow N ₂ + H ₂ O	
(iii)	Show how the overall stoichiometric equation I can be derived from the three equations for the individual steps given above.	
(iv)	Suggest which of the three reactions in the mechanism is the rate determining step Explain your answer.	
	e following information on half-reactions relates to the ess of FeSO ₄ .	
	$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$	E ^e = +0.77 V
	$3H^+ + NO_3^- + 2e^- \rightarrow HNO_2 + H_2O$	$E^{\Theta} = +0.94 \text{V}$
		$E^{\Theta} = +0.99 \text{V}$
(i)	Suggest the formula of the nitrogen-containing final product of this reaction.	
(ii)	Write an equation for the formation of this nitrogen-containing product.	
(iii)	Nitrogen monoxide forms a dark brown complex with an excess of $FeSO_4(aq)$. What kind of bonding is involved in the complex formation?	
(iv)	Suggest a formula for this complex.	
		14

[Total: 17]