Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Ideal Gases

Question paper 4

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Ideal Gases
Sub Topic	
Paper Type	Theory
Booklet	Question paper 4

Time Allowed: 71 minutes

Score: /59

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a)	Sta	te the basic assumptions of the kinetic theory of gases.
		[4]
(b)		e equations for the pressure of an ideal gas to deduce that the average translational etic energy $<\!E_{\rm K}\!>$ of a molecule of an ideal gas is given by the expression
		$\langle E_{K} \rangle = \frac{3}{2} \frac{R}{N_{A}} T$
	whe	ere R is the molar gas constant, $N_{\rm A}$ is the Avogadro constant and T is the modynamic temperature of the gas.
		[3]
(c)		euterium nucleus 2_1 H and a proton collide. A nuclear reaction occurs, represented by equation
		${}_{1}^{2}H + {}_{1}^{1}p \longrightarrow {}_{2}^{3}He + \gamma.$
	(i)	State and explain whether the reaction represents nuclear fission or nuclear fusion.
		[2]

(ii)	For the reaction to occur, the minimum total kinetic energy of the deuterium nucleus and the proton is $2.4 \times 10^{-14} \text{J}$. Assuming that a sample of a mixture of deuterium nuclei and protons behaves as an ideal gas, calculate the temperature of the sample for this reaction to occur.
(iii)	temperature = K [3] Suggest why the assumption made in (ii) may not be valid.
	[1]

		gas occupies a container of volume 4.5 × 10 ³ cm ³ at a pressure of 2.5 × 10 ³ Pa and rature of 290 K.
a)	Sho	w that the number of atoms of gas in the container is 2.8×10^{23} .
		[2]
b)	Ator	ms of a real gas each have a diameter of 1.2×10^{-10} m.
	(i)	Estimate the volume occupied by 2.8×10^{23} atoms of this gas.
		$volume = m^3 [2]$
	(ii)	By reference to your answer in (i), suggest whether the real gas does approximate to an ideal gas.
		[2]

3	Sour	ces of α -particles are frequently found to contain traces of helium gas.
		adioactive source emits α -particles at a constant rate of 3.5 × 10 ⁶ s ⁻¹ . The α -particles are ected for a period of 40 days. Each α -particle becomes one helium atom.
	(a)	By reference to the half-life of the source, suggest why it may be assumed that the rate of emission of α -particles is constant.
		[1]
	(b)	The helium gas may be assumed to be an ideal gas. Calculate the volume of gas that is collected at a pressure of 1.5×10^5 Pa and at a temperature of 17° C.
		volume = m ³ [3]

4 (a)	Explain o	qualitatively	/ how molec	ular mo	vement o	causes th	e pressure	e exerted by	≀a gas.
(b)		e density	of neon g	as at a temp	perature	e of 273 k	Κ and a p			
		-		an-square (r.				ns at		
	(i)	273 K,								
	(ii)	546 K.				speed =			ms	s ⁻¹ [3]
						speed =			ms	s ⁻¹ [2]

(c)	The calculations in (b) are based on the density for neon being 0.900 kg m ⁻³ . Suggest the effect, if any, on the root-mean-square speed of changing the density at constant temperature.
	[2]
	[-]

5	(a)	An 1.0	amount of 1.00 mol of Helium-4 gas is contained in a cylinder at a pressure of 2×10^5 Pa and a temperature of 27 °C.
		(i)	Calculate the volume of gas in the cylinder.
			volume = m ³ [2]
		(ii)	Hence show that the average separation of gas atoms in the cylinder is approximately 3.4×10^{-9} m.
			[2]
	(b)	Cal	culate
		(i)	the gravitational force between two Helium-4 atoms that are separated by a distance of 3.4 \times 10 ⁻⁹ m,

force = N [3]

	(II)	the ratio
		weight of a Helium-4 atom
		gravitational force between two Helium-4 atoms with separation $3.4 \times 10^{-9} \mathrm{m}^{-3}$
		ratio —
		ratio =[2]
(c)		mment on your answer to (b)(ii) with reference to one of the assumptions of the etic theory of gases.
		[2]

(a)	State what is meant by an ideal gas.
(b)	Calculate the amount of air, in mol, in the tyre.
	amount = mo
(c)	The pressure in the tyre is to be increased using a pump. On each stroke of the pu 0.012 mol of air is forced into the tyre.
	Calculate the number of strokes of the pump required to increase the pressur $3.4 \times 10^5 \text{Pa}$ at a temperature of 27 °C.

7	(a)	Sta	te what is meant by an <i>ideal</i> gas.				
			[2]				
	(b)	The product of pressure p and volume V of an ideal gas of density ρ at temperature T is given by the expressions					
			$p = \frac{1}{3}\rho < c^2 >$				
			and $pV = NkT$,				
		whe	ere N is the number of molecules and k is the Boltzmann constant.				
		(i)	State the meaning of the symbol $< c^2 >$.				
			[1]				
		(ii)	Deduce that the mean kinetic energy $E_{\rm K}$ of the molecules of an ideal gas is given by the expression				
			$E_{K} = \frac{3}{2}kT.$				
			[2]				
	(c)	In o	order for an atom to escape completely from the Earth's gravitational field, it must e a speed of approximately $1.1 \times 10^4\text{m}\text{s}^{-1}$ at the top of the Earth's atmosphere.				
		(i)	Estimate the temperature at the top of the atmosphere such that helium, assumed to be an ideal gas, could escape from the Earth. The mass of a helium atom is $6.6\times10^{-27}\text{kg}$.				
			temperature = K [2]				
		(ii)	Suggest why some helium atoms will escape at temperatures below that calculated in (i).				
			543				