Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Ideal Gases

Question paper 5

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Ideal Gases
Sub Topic	
Paper Type	Theory
Booklet	Question paper 5

Time Allowed: 63 minutes

Score: /52

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	The	e pres	ssure <i>p</i> of an ideal gas is given by the expression
			$\rho = \frac{1}{3} \frac{Nm}{V} < c^2 > .$
	(a)	Exp	plain the meaning of the symbol $< c^2 >$.
			[2]
	(b)		e ideal gas has a density of 2.4 kg m $^{-3}$ at a pressure of 2.0 $\times10^5$ Pa and a perature of 300 K.
		(i)	Determine the root-mean-square (r.m.s.) speed of the gas atoms at 300 K.
			r.m.s. speed = $m s^{-1}$ [3]
		(ii)	Calculate the temperature of the gas for the atoms to have an r.m.s. speed that is twice that calculated in (i).
			temperature = K [3]

2	(a)	State what is meant by internal energy.

(b) The variation with volume *V* of the pressure *p* of an ideal gas as it undergoes a cycle ABCA of changes is shown in Fig. 2.1.

Fig. 2.1

The temperature of the gas at A is 290 K. The temperature at B is 870 K.

	Det	ermine	
	(i)	the amount, in mol, of gas,	
	(ii)	the temperature of the gas at C.	amount =mol [2]
(c)	Exp	olain why the change from C to A inv	mperature =K [2] olves external work and a change in internal energy.
			[2]

3	its n	nass	net Mars may be considered to be an isolated sphere of diameter 6.79×10^6 m with of 6.42×10^{23} kg concentrated at its centre. mass 1.40 kg rests on the surface of Mars.
	For	this r	rock,
	(a)	(i)	determine its weight,
			weight = N [3]
		(ii)	show that its gravitational potential energy is -1.77×10^7 J.
			[2]
	(b)		the information in (a)(ii) to determine the speed at which the rock must leave the ace of Mars so that it will escape the gravitational attraction of the planet.
			speed = $m s^{-1}$ [3]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c)	The mean translational kinetic energy $\langle E_{\rm K} \rangle$ of a molecule of an ideal gas is given by the
	expression

$$\langle E_{K} \rangle = \frac{3}{2}kT$$

where T is the thermodynamic temperature of the gas and k is the Boltzmann constant.

(i) Determine the temperature at which the root-mean-square (r.m.s.) speed of hydrogen molecules is equal to the speed calculated in (b).
 Hydrogen may be assumed to be an ideal gas.
 A molecule of hydrogen has a mass of 2 u.

(a)	to 3	me gas, initially at a temperature of 27.2°C, is heated so that its temperature rises 88.8°C. culate, in kelvin, to an appropriate number of decimal places,
	(i)	the initial temperature of the gas,
	(ii)	initial temperature = K [2] the rise in temperature.
(b)	The	rise in temperature = $K[1]$ e pressure p of an ideal gas is given by the expression
(5)	1110	
		$p = \frac{1}{3}\rho < c^2 >$
	whe	ere $ ho$ is the density of the gas.
	(i)	State the meaning of the symbol $< c^2 >$.
		[1]
	(ii)	Use the expression to show that the mean kinetic energy $<\!E_{\rm K}\!>$ of the atoms of an ideal gas is given by the expression
		$\langle E_{K} \rangle = \frac{3}{2} kT.$
		Explain any symbols that you use.
		[4]

;)	Hellum-4 may be assumed to behave as an ideal gas. A cylinder has a constant volume of $7.8 \times 10^3 \text{ cm}^3$ and contains helium-4 gas at a pressure of $2.1 \times 10^7 \text{ Pa}$ and at a temperature of 290 K .		
	Cal	culate, for the helium gas,	
	(i)	the amount of gas,	
			amount = mol [2]
	(ii)	the mean kinetic energy	
	(,		
	,,,, ,		mean kinetic energy =
	(iii)	the total internal energy.	
			internal energy = J [3]

5	540 com	cm ³ pres	me of some air, assumed to be an ideal gas, in the cylinder of a car engine is at a pressure of $1.1\times10^5\mathrm{Pa}$ and a temperature of 27 °C. The air is suddenly sed, so that no thermal energy enters or leaves the gas, to a volume of $30\mathrm{cm}^3$. The rises to $6.5\times10^6\mathrm{Pa}$.
	(a)	Dete	ermine the temperature of the gas after the compression.
	(b)	(i)	temperature =
			Use the law to explain why the temperature of the air changed during the compression.

.....[4]