Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Temperature

Question paper 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Temperature
Sub Topic	
Paper Type	Theory
Booklet	Question paper 1

Time Allowed: 65 minutes

Score: /54

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

The variation with temperature of the resistance $R_{\rm T}$ of a thermistor is shown in Fig. 6.1.

Fig. 6.1

The thermistor is connected into the circuit of Fig. 6.2.

Fig. 6.2

	bat stan	tery has e.m.f. 9.0V and negligible internal resistance. The voltmeter has infinite ce.
(a)	For	the thermistor at 22.5 °C, calculate
	(i)	the total resistance between points A and B on Fig. 6.2,
	(ii)	resistance = Ω [2] the reading on the voltmeter.
		voltmeter reading =V [2]
(b)		temperature of the thermistor is changed. The voltmeter now reads 4.0 V. ermine
	(i)	the total resistance between points A and B on Fig. 6.2,

resistance = Ω [2]

	(ii)	the temperature of the thermistor.
		temperature =°C [2]
(c)		tudent suggests that the voltmeter, reading up to 10 V, could be calibrated to measure sperature.
		ggest two disadvantages of using the circuit of Fig. 6.2 with this voltmeter for the asurement of temperature in the range 0°C to 25°C.
	1	
	2	
		[2]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2 An electronic sensor may be represented by the block diagram of Fig. 9.1.

Fig. 9.1

(a)	State the function of the processing unit.
	[2]

(b) A student designs a sensing unit for temperature change. A 4V supply, a fixed resistor of resistance $2.5\,\mathrm{k}\Omega$ and a thermistor are available. The thermistor has resistance $3.0\,\mathrm{k}\Omega$ at $6\,^\circ\mathrm{C}$ and resistance $1.8\,\mathrm{k}\Omega$ at $20\,^\circ\mathrm{C}$.

Complete the circuit diagram of Fig. 9.2 to show how the resistor and the thermistor are connected to provide an output that is greater than 2V at 6 °C and less than 2V at 20 °C. Mark clearly the output $V_{\rm OUT}$

Fig. 9.2

[3]

3	(a)		metal spheres are in thermal equilibrium. e and explain what is meant by thermal equilibrium.
			[2]
	(b)		electric water heater contains a tube through which water flows at a constant rate. water in the tube passes over a heating coil, as shown in Fig. 3.1.
			heating water out coil tube water in
			Fig. 3.1
		3.8k	water flows into the tube at a temperature of 18° C. When the power of the heater is kW, the temperature of the water at the outlet is 42° C. specific heat capacity of water is $4.2 \mathrm{Jg^{-1}K^{-1}}$.
		(i)	Use the data to calculate the flow rate, in g s ⁻¹ , of water through the tube.
			flow rate = $g s^{-1} [3]$
		(ii)	State and explain whether your answer in (i) is likely to be an overestimate or an underestimate of the flow rate.

4	(a)		esistance thermometer and a thermocouple thermometer are both used at the same to measure the temperature of a water bath.
			plain why, although both thermometers have been calibrated correctly and are at illibrium, they may record different temperatures.
			[2]
	(b)	Sta	te
		(i)	in what way the absolute scale of temperature differs from other temperature scales,
			[1]
		(ii)	what is meant by the absolute zero of temperature.
			[1]
	(c)		e temperature of a water bath increases from 50.00°C to 80.00°C. ermine, in kelvin and to an appropriate number of significant figures,
		(i)	the temperature 50.00 °C,
			temperature = K [1]
		(ii)	the change in temperature of the water bath.
			temperature change = K [1]

5	(a)	to 3	ne gas, initially at a temperature of 27.2°C, is heated so that its temperature rises 8.8°C. culate, in kelvin, to an appropriate number of decimal places,
		(i)	the initial temperature of the gas,
		(ii)	$\mbox{initial temperature} = \mbox{K [2]}$ the rise in temperature.
			rise in temperature = K [1]
	(b)	The	pressure p of an ideal gas is given by the expression
			$p = \frac{1}{3}\rho < c^2 >$
		whe	ere $ ho$ is the density of the gas.
		(i)	State the meaning of the symbol $< c^2 >$.
			[1]
		/::\	
		(ii)	Use the expression to show that the mean kinetic energy $\langle E_{\rm K} \rangle$ of the atoms of an ideal gas is given by the expression
			$\langle E_{K} \rangle = \frac{3}{2} kT.$
			Explain any symbols that you use.
			[4]

	culate, for the helium gas,	
(i)		
	the amount of gas,	
		amount = mol [2]
(ii)	the mean kinetic energy	of the atoms,
		mean kinetic energy =
iii)	the total internal energy.	

6	(a) [↑]) The resistance of a thermistor at 0 °C is 3840 Ω . At 100 °C the resistance is 190 Ω . When the thermistor is placed in water at a particular constant temperature, its resistance is 2300 Ω .				
		(i)	Assuming that the resistance of the thermistor varies linearly with temperature, calculate the temperature of the water.			
			temperature = °C [2]			
		(ii)	The temperature of the water, as measured on the thermodynamic scale of temperature, is $286\mathrm{K}.$			
			By reference to what is meant by the thermodynamic scale of temperature, comment on your answer in (i).			
			[3]			
	(b)	A p	olystyrene cup contains a mass of 95 g of water at 28 °C.			
			ube of ice of mass 12g is put into the water. Initially, the ice is at 0 °C. The water, of cific heat capacity $4.2 \times 10^3 \text{J kg}^{-1} \text{K}^{-1}$, is stirred until all the ice melts.			
			cuming that the cup has negligible mass and that there is no heat exchange with the osphere, calculate the final temperature of the water.			
		The	specific latent heat of fusion of ice is $3.3 \times 10^5 \mathrm{Jkg^{-1}}$.			