The Periodic Table: Chemical Periodicity

Question Paper 8

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	The Periodic Table: Chemical Periodic
Sub-Topic	
Paper Type	Theory
Booklet	Question Paper 8

Time Allowed: 64 minutes

Score: /53

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1	The ion	s of transition elements form complexes b	y reacting with <i>ligands</i> .
	(a)	State what is meant by the terms:	
		complex,	
		ligand	
	(ii)	Two of the complexes formed by copper Draw three-dimensional diagrams of their	are $[\mathrm{Cu}(\mathrm{H_2O})_{\mathrm{6}}]^{2+}$ and $\mathrm{CuC}l_{\mathrm{4}}^{2-}$. r structures in the boxes and name their shapes.
		[Cu(H ₂ O) ₆] ²⁺	CuCl ₄ ²⁻
		shape:	shape:
	(iii)	the Pt atom. There are two isomeric complexes with the state of the st	ers, and, by comparison with a similar type of
		isomer 1	isomer 2

(b)	-	oper forms tw per(I) ions.	vo series of compounds, one containing copper(II) ions and the other containin	g
	(i)	Complete the	he electronic structures of these ions.	
		Cu(II)	[Ar]	
		Cu(I)	[Ar]	
	(ii)	Use these	electronic structures to explain why	
		copper(II)	salts are usually coloured,	
		copper(I) sa	alts are usually white or colourless.	
			[5	 5]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) Copper(I) oxide and copper(II) oxide can both be used in the ceramic industry to give blue, green or red tints to glasses, glazes and enamels.

The table lists the ΔH_f^{\bullet} values for some compounds.

compound	$\Delta H_{\rm f}^{\rm e}/{\rm kJmol^{-1}}$
Cu ₂ O(s)	-168.6
CuO(s)	-157.3
Cu(NO ₃) ₂ (s)	-302.9
NO ₂ (g)	+33.2

(i) Copper(II) oxide can be produced in a pure form by heating copper(II) nitrate. Use suitable ΔH_f^{e} values from the table to calculate the ΔH^{e} for this reaction.

$$Cu(NO_3)_2(s) \rightarrow CuO(s) + 2NO_2(g) + \frac{1}{2}O_2(g)$$

$$\Delta H^{\Theta} = \dots kJ \, \text{mol}^{-1}$$

 $\Delta H^{\Theta} = \dots kJ \, \text{mol}^{-1}$

- (ii) Copper(I) oxide can be produced from copper(II) oxide.
 - Use suitable ΔH_f^{\bullet} values from the table to calculate ΔH^{\bullet} for the reaction.

$$2CuO(s) \rightleftharpoons Cu_2O(s) + \frac{1}{2}O_2(g)$$

•	Hence suggest whether a low or a high temperature of oxidation would favour production of copper(I) oxide. Explain your reasoning.	the
		 [4]

[Total: 16]

2

Thi	s que	estion refers to the elements in the section of the	ne Pe	riodic	Table	show	n belo	W.
		Н						He
Li	Вє		В	С	Ν	0	F	Ne
Na	Μç		Αl	Si	Р	S	Cl	Ar
K	Ca	a transition elements	Ga	Ge	As	Se	Br	Kr
(a)		m this list of elements, identify in each case cribed. Give the symbol of the element.	one	elem	ent th	at ha	s the	property
	(i)	An element that when placed in cold water sin	ıks ar	nd read	cts rea	adily.		
	(ii)	An element whose molecules contain π bonding	ng.					
	(iii) An element that forms a gaseous toxic oxide.							
	(iv)	The element which has a giant molecular structure.	ıcture	and	forms	an ox	ide w	hich also
	(v)	An element that forms a covalent chloride conducting solution.	whic	h diss	olves	in wa	ater t	o give a
	(vi)	The element in Period 3 (Na to Ar) with the gro	eates	t elect	rical c	onduc	ctivity.	
								[6]

(b)		ne of the elements in Period 3 (Na to Ar) burn with a coloured flame when heated in gen or chlorine.					
	(i)		Give the symbol of one such element, the formula of the oxide formed, and state the flame colour that would be seen.				
		symbol of elen	nent				
		formula of oxic	le				
		flame colour					
	(ii)		•		-		of the chloride formed, and is shaken with water.
		formula of chlo	oride				
		pH of solution					[4]
(c)			h both bromine of chlorine and				nd IC l respectively. wn in the table.
			substance	Cl ₂	BrC1	IC1	
			m.p./°C	-101	-66	24	
	(i)	Showing outer	electrons only	draw a 'd	ot-and-c	ross' dia	gram of the bonding in IC1.
	(ii)	Suggest why t	he melting poin	ts increas	se from C	Cl ₂ to IC	1.
((iii)	Suggest which Explain your a		molecule	s has the	e largest	permanent dipole.
							[5]

[Total: 15]

3	(a)	(i)	What is meant by the term lattice energy?
		(ii)	Write an equation to represent the lattice energy of MgO.
			[3]
	(b)		apparatus shown in the diagram can be used to measure the enthalpy change of nation of magnesium oxide, $\Delta H_{\rm f}^{\rm e}({ m MgO})$.
		List	copper spiral water small electric heater (to ignite magnesium) the measurements you would need to make using this apparatus in order to calculate (MgO).

.....[3]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c)	Use the following data, together with appropriate data from the Data Booklet, to calculate
	a value of $\Delta H_{\rm f}^{\rm e}({\rm MgO})$.

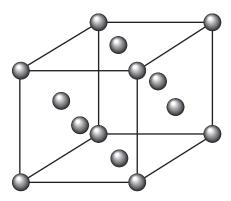
lattice energy of MgO(s) = $-3791 \text{ kJ mol}^{-1}$ enthalpy change of atomisation of Mg = $+148 \text{ kJ mol}^{-1}$ electron affinity of the oxygen atom = -141 kJ mol^{-1} electron affinity of the oxygen anion, O⁻ = $+798 \text{ kJ mol}^{-1}$

$$\Delta H_{\mathrm{f}}^{\mathrm{e}}(\mathrm{MgO}) = \dots kJ \,\mathrm{mol^{-1}}$$
[3]

(d) Write equations, including state symbols, for the reactions, if any, of the following two oxides with water. Suggest values for the pH of the resulting solutions.

oxide	equation	pH of resulting solution
Na ₂ O		
MgO		

[3]


[Total: 12]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4 Copper, proton number 29, and argon, proton number 18, are elements which have different physical and chemical properties.

In the solid state, each element has the same face-centred cubic crystal structure which is shown below.

(a) Which types of particle are present in the copper and argon crystals? In each case, give their formula.

element	particle	ormula
copper		
argon		

At room temperature, copper is a solid while argon is a gas.

(b)	Explain these observations in terms of the forces present in each solid structure.							
	[4]							

[2]

Although copper is a relatively unreactive element, when it is heated to a high temperature in an excess of chlorine, copper(II) chloride is formed.

When a mixture of argon and chlorine is heated to a high temperature, no reaction occurs.

(c)	(i)	How does chlorine behave in its reaction with copper?									
	(ii) Suggest a reason for the lack of a reaction between argon and chlorine.										
										[2]	
The	mel	ting points o	f the noble gases r	neon to	xenon	are giv	en belo)W.			
				Ne	Ar	Kr	Xe				
			melting point/K	25	84	116	161				
(d)	Exp	lain why the	re is an increase ir	n meltin	g point	from n	eon to	xenon.			
									•••••		
										[2]	
									[7	Гotal: 10]	