For more awesome GCSE and A level resources, visit us at <a href="https://www.savemyexams.co.uk/">www.savemyexams.co.uk/</a>

# Thermal Properties of Materials

#### Question paper 1

| Level      | International A Level           |
|------------|---------------------------------|
| Subject    | Physics                         |
| Exam Board | CIE                             |
| Topic      | Thermal Properties of Materials |
| Sub Topic  |                                 |
| Paper Type | Theory                          |
| Booklet    | Question paper 1                |

Time Allowed: 59 minutes

Score: /49

Percentage: /100

| A*   | А      | В   | С     | D     | E   | U    |
|------|--------|-----|-------|-------|-----|------|
| >85% | '77.5% | 70% | 62.5% | 57.5% | 45% | <45% |

| 1 | Distinguish between melting and evaporation. |
|---|----------------------------------------------|
|   | melting:                                     |
|   |                                              |
|   |                                              |
|   |                                              |
|   | evaporation:                                 |
|   |                                              |
|   |                                              |
|   | [4                                           |

| 2 | Distinguish between evaporation and boiling. |    |
|---|----------------------------------------------|----|
|   | evaporation:                                 |    |
|   |                                              |    |
|   |                                              |    |
|   | boiling:                                     |    |
|   |                                              |    |
|   |                                              |    |
|   |                                              | [4 |

| 3   | (a)   | (i)    | State one <b>similarity</b> between the processes of                  | •                     |
|-----|-------|--------|-----------------------------------------------------------------------|-----------------------|
|     | (ii)  | State  | e two <b>differences</b> between the processes of eva                 | poration and boiling. |
|     |       |        |                                                                       |                       |
|     |       |        |                                                                       | [4]                   |
| (b) | Titaı | nium r | metal has a density of 4.5 g cm <sup>-3</sup> .                       |                       |
|     | A cu  | ıbe of | of titanium of mass 48 g contains 6.0 $\times$ 10 <sup>23</sup> atoms | S.                    |
|     | (i)   | Calcu  | culate the volume of the cube.                                        |                       |
|     |       |        |                                                                       |                       |
|     |       |        |                                                                       |                       |
|     |       |        |                                                                       |                       |
|     |       |        |                                                                       |                       |
|     |       |        |                                                                       |                       |
|     |       |        | volume =                                                              | cm <sup>3</sup> [1    |

| (ii) | ) Estimate |                                               |  |
|------|------------|-----------------------------------------------|--|
|      | 1.         | the volume occupied by each atom in the cube, |  |

the separation of the atoms in the cube.

| 1 | (a) | Ехр  | plain what is meant by the internal energy of a substance.                                                            |
|---|-----|------|-----------------------------------------------------------------------------------------------------------------------|
|   |     |      |                                                                                                                       |
|   |     |      |                                                                                                                       |
|   |     |      | [2]                                                                                                                   |
|   | (b) |      | te and explain, in molecular terms, whether the internal energy of the following eases, decreases or does not change. |
|   |     | (i)  | a lump of iron as it is cooled                                                                                        |
|   |     |      |                                                                                                                       |
|   |     |      |                                                                                                                       |
|   |     |      |                                                                                                                       |
|   |     |      | [3]                                                                                                                   |
|   |     | (ii) | some water as it evaporates at constant temperature                                                                   |
|   |     |      |                                                                                                                       |
|   |     |      |                                                                                                                       |
|   |     |      |                                                                                                                       |
|   |     |      | [3]                                                                                                                   |

| 5 | (a) | State what is meant by internal energy. |    |
|---|-----|-----------------------------------------|----|
|   |     |                                         |    |
|   |     |                                         |    |
|   |     |                                         |    |
|   |     |                                         |    |
|   |     |                                         | Γ0 |

**(b)** The variation with volume *V* of the pressure *p* of an ideal gas as it undergoes a cycle ABCA of changes is shown in Fig. 2.1.



Fig. 2.1

The temperature of the gas at A is 290 K. The temperature at B is 870 K.

|     | Det  | termine                          |                                                    |
|-----|------|----------------------------------|----------------------------------------------------|
|     | (i)  | the amount, in mol, of gas,      |                                                    |
|     | (ii) | the temperature of the gas at C. | amount =mol [2]                                    |
|     | _    |                                  | perature = K [2]                                   |
| (c) | Exp  |                                  | ves external work and a change in internal energy. |
|     |      |                                  |                                                    |
|     |      |                                  | [2]                                                |

| 6 | (a) | Define specific latent heat. |    |
|---|-----|------------------------------|----|
|   |     |                              |    |
|   |     |                              |    |
|   |     |                              |    |
|   |     |                              | ΓO |

**(b)** An electrical heater is immersed in some melting ice that is contained in a funnel, as shown in Fig. 3.1.



Fig. 3.1

The heater is switched on and, when the ice is melting at a constant rate, the mass m of ice melted in 5.0 minutes is noted, together with the power P of the heater. The power P of the heater is then increased. A new reading for the mass m of ice melted in 5.0 minutes is recorded when the ice is melting at a constant rate.

Data for the power *P* and the mass *m* are shown in Fig. 3.2.

| power of heater P/W | mass <i>m</i> melted in 5.0 minutes/g | mass m melted per second/gs <sup>-1</sup> |
|---------------------|---------------------------------------|-------------------------------------------|
| 70<br>110           | 78<br>114                             |                                           |

Fig. 3.2

| (i)  | Cor | omplete Fig. 3.2 to determine the mass melted per second for each power of the h | eater.<br>[2]     |
|------|-----|----------------------------------------------------------------------------------|-------------------|
| (ii) | Use | se the data in the completed Fig. 3.2 to determine                               | ,                 |
|      | 1.  | a value for the specific latent heat of fusion $L$ of ice,                       |                   |
|      |     |                                                                                  |                   |
|      |     |                                                                                  |                   |
|      |     |                                                                                  |                   |
|      |     |                                                                                  |                   |
|      |     |                                                                                  |                   |
|      |     | L =Jg                                                                            | <sup>-1</sup> [3] |
|      | 2.  | the rate $h$ of thermal energy gained by the ice from the surroundings.          |                   |
|      |     |                                                                                  |                   |
|      |     |                                                                                  |                   |
|      |     |                                                                                  |                   |
|      |     |                                                                                  |                   |
|      |     | <u>,</u>                                                                         | \A/ [O]           |
|      |     | h =                                                                              | vv [2]            |
|      |     |                                                                                  |                   |
|      |     |                                                                                  |                   |

#### For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

| 7 | (a) | Define specific latent heat. |    |
|---|-----|------------------------------|----|
|   |     |                              |    |
|   |     |                              |    |
|   |     |                              | [0 |

(b) A beaker containing a liquid is placed on a balance, as shown in Fig. 3.1.



Fig. 3.1

A heater of power 110W is immersed in the liquid. The heater is switched on and, when the liquid is boiling, balance readings m are taken at corresponding times t.

A graph of the variation with time *t* of the balance reading *m* is shown in Fig. 3.2.



Fig. 3.2

| (i)   | State the feature of Fig. 3.2 which suggests that the liquid is boiling at a steady rate.                                                                                                                 |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | [1]                                                                                                                                                                                                       |
| (ii)  | Use data from Fig. 3.2 to determine a value for the specific latent heat <i>L</i> of vaporisation of the liquid.                                                                                          |
|       |                                                                                                                                                                                                           |
|       |                                                                                                                                                                                                           |
|       |                                                                                                                                                                                                           |
|       | $L = \dots J kg^{-1} [3]$                                                                                                                                                                                 |
| (iii) | State, with a reason, whether the value determined in (ii) is likely to be an overestimate or an underestimate of the normally accepted value for the specific latent heat of vaporisation of the liquid. |
|       |                                                                                                                                                                                                           |
|       |                                                                                                                                                                                                           |
|       | [2]                                                                                                                                                                                                       |