For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Thermal Properties of Materials

Question paper 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Thermal Properties of Materials
Sub Topic	
Paper Type	Theory
Booklet	Question paper 2

Time Allowed: 59 minutes

Score: /49

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 The vo	olume vater	e of 1.00 kg of water in the liquid state at 100 °C is 1.00×10^{-3} m ³ . The volume of 1.00 kg vapour at 100 °C and atmospheric pressure 1.01×10^{5} Pa is 1.69 m ³ .
(a)		w that the work done against the atmosphere when 1.00 kg of liquid water becomes water our is 1.71×10^5 J.
		[2]
/I-A	<i>(</i> :)	
(a)	(i)	The first law of thermodynamics may be given by the expression
		$\Delta U = + q + w$
		where ΔU is the increase in internal energy of the system.
		State what is meant by
		1. + q,
		[1]
		2. + <i>w</i> .
		[1]
	(ii)	The specific latent heat of vaporisation of water at 100 °C is 2.26 × 10 ⁶ J kg ⁻¹ .
		A mass of 1.00 kg of liquid water becomes water vapour at 100 °C.
		Determine, using your answer in (a) , the increase in internal energy of this mass of water during vaporisation.

2	A microwave cooker uses electromagnetic waves of frequency 2450 MHz. The microwaves warm the food in the cooker by causing water molecules in the food to oscillate with a large amplitude at the frequency of the microwaves.				
	(a)	State the name given to this phenomenon. [1]			
	(b)	The effective microwave power of the cooker is 750W. The temperature of a mass of 280 g of water rises from 25 °C to 98 °C in a time of 2.0 minutes			
		Calculate a value for the specific heat capacity of the water.			
		specific heat capacity =			
	(c)	The value of the specific heat capacity determined from the data in (b) is greater than the accepted value. A student gives as the reason for this difference: 'heat lost to the surroundings'.			
		Suggest, in more detail than that given by the student, a possible reason for the difference.			
		[1]			

3	(a)	(i)	State what is meant by the <i>internal energy</i> of a system.
			[2]
		(ii)	Explain why, for an ideal gas, the internal energy is equal to the total kinetic energy of the molecules of the gas.
			[2]
	(b)	The	mean kinetic energy $\langle E_{\rm K} \rangle$ of a molecule of an ideal gas is given by the expression
			$\langle E_{K} \rangle = \frac{3}{2}kT$
		whe	ere k is the Boltzmann constant and T is the thermodynamic temperature of the gas.
			ylinder contains 1.0 mol of an ideal gas. The gas is heated so that its temperature nges from 280 K to 460 K.
		(i)	Calculate the change in total kinetic energy of the gas molecules.
			change in energy = J [2]

(ii)	During the heating, the gas expands, doing $1.5 \times 10^3 \mathrm{J}$ of work. State the first law of thermodynamics. Use the law and your answer in (i) to determine the total energy supplied to the gas.
	total energy = J [3]

A student suggests that, when an ideal gas is heated from 100°C to 200°C, the integer energy of the gas is doubled.			
	(a)	(i)	State what is meant by internal energy.
			[2
		(ii)	By reference to one of the assumptions of the kinetic theory of gases and you answer in (i), deduce what is meant by the internal energy of an ideal gas.
			[3
	(b)	Stat	te and explain whether the student's suggestion is correct.
			[2

(a)	Define specific latent heat.
	[2]
(b)	The heater in an electric kettle has a power of 2.40 kW. When the water in the kettle is boiling at a steady rate, the mass of water evaporated in 2.0 minutes is 106 g. The specific latent heat of vaporisation of water is 2260 J g ⁻¹ .
	Calculate the rate of loss of thermal energy to the surroundings of the kettle during the boiling process.
	rate of loss = W [3]

6	(a)	Sta	te what is meant by the internal energy of a system.
			[2]
	(b)		te and explain qualitatively the change, if any, in the internal energy of the following tems:
		(i)	a lump of ice at 0 °C melts to form liquid water at 0 °C,
			[3]
		(ii)	a cylinder containing gas at constant volume is in sunlight so that its temperature rises from 25 $^{\circ}\text{C}$ to 35 $^{\circ}\text{C}$.
			[3]

7	(a)	The first law of thermodynamics may be expressed in the form
		$\Delta U = q + w.$
	Ехр	ain the symbols in this expression.
	+ Δ(J
	+ q	
	+ W	[3]
(b)	(i)	State what is meant by specific latent heat.
		[3]
	(ii)	Use the first law of thermodynamics to explain why the specific latent heat of vaporisation is greater than the specific latent heat of fusion for a particular substance.
		[2]