For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ # Thermal Properties of Materials #### Question paper 4 | Level | International A Level | |------------|---------------------------------| | Subject | Physics | | Exam Board | CIE | | Topic | Thermal Properties of Materials | | Sub Topic | | | Paper Type | Theory | | Booklet | Question paper 4 | Time Allowed: 64 minutes Score: /53 Percentage: /100 | A* | Α | В | С | D | E | U | |------|--------|-----|-------|-------|-----|------| | >85% | '77.5% | 70% | 62.5% | 57.5% | 45% | <45% | | | $pV = constant \times T$ | |-----|---| | | relates the pressure p and volume V of a gas to its kelvin (thermodynamic) temperature T . | | | State two conditions for the equation to be valid. | | | 1 | | | | | | 2 | | | [2] | | (b) | A gas cylinder contains 4.00×10^4 cm 3 of hydrogen at a pressure of 2.50×10^7 Pa and a temperature of 290 K. | | | The cylinder is to be used to fill balloons. Each balloon, when filled, contains $7.24\times10^3\text{cm}^3$ of hydrogen at a pressure of $1.85\times10^5\text{Pa}$ and a temperature of 290 K. | | | Calculate, assuming that the hydrogen obeys the equation in (a), | | | (i) the total amount of hydrogen in the cylinder, | amount = mol [3] | | | (ii) the number of balloons that can be filled from the cylinder. | | | | | | | [1] | |-----|------------|--| | (b) | wat | e volume occupied by 1.00 mol of liquid water at 100° C is $1.87\times10^{-5}\text{m}^3$. When the er is vaporised at an atmospheric pressure of 1.03×10^{5} Pa, the water vapour has a time of $2.96\times10^{-2}\text{m}^3$. | | | The
4.0 | e latent heat required to vaporise 1.00 mol of water at 100 °C and 1.03×10^5 Pa is 5×10^4 J. | | | Det | ermine, for this change of state, | | | (i) | the work w done on the system, | <i>w</i> = J [2] | | | (ii) | the heating q of the system, | | | | | | | | | | | | <i>q</i> = J [1] | | | (iii) | the increase in internal energy ΔU of the system. | $\Delta U = \dots J$ [1] | | (c) | Using your answer to | (b)(iii). | estimate the | binding energy | v per molecu | ule in liquid water. | |-----|-------------------------|--------------------------|--------------|----------------|--------------|----------------------| | ν-/ | John G Joan and Toll to | \~ <i>/</i> \ <i>/</i> , | oominate me | 2ug 2u.g | , poo.o. | mo mi ngana matom | | 3 | (a) | Defi | ne <i>specit</i> | fic latent heat of fusion. | | | |---|-----|------|------------------|---|--|----------------| [2] | | | (b) | | | g of ice at –15°C is taken fron
er at 28°C. Data for ice and for | n a freezer and placed in a beal
water are given in Fig. 3.1. | ker containing | | | | | | specific heat capacity
/Jkg ⁻¹ K ⁻¹ | specific latent heat of fusion / J kg ⁻¹ | | | | | | ice | 2.1×10^{3} | 3.3×10^5 | | | | | | water | 4.2×10^3 | _ | | | | | | | Fig. 3.1 | | | | | | | water at | 0°C. | | | | | | | | | energy = | J [3] | | | | (ii) | | ng that the beaker has negliging in the beaker. | ole mass, calculate the final to | emperature of | | | | | | | | | | | | | | te | emperature = | °C [3] | #### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ 4 The first law of thermodynamics may be expressed in the form $$\Delta U = q + w,$$ where U is the internal energy of the system, ΔU is the increase in internal energy, q is the thermal energy supplied to the system, w is the work done on the system. Complete Fig. 6.1 for each of the processes shown. Write down the symbol '+' for an increase, the symbol '-' to indicate a decrease and the symbol '0' for no change, as appropriate. | | U | q | W | |---|---|---|---| | the compression of an ideal gas at constant temperature | | | | | the heating of a solid with no expansion | | | | | the melting of ice at 0 °C to give water at 0 °C (Note: ice is less dense than water) | | | | [6] Fig. 6.1 | 5 | 540
com | cm ³
pres | arme of some air, assumed to be an ideal gas, in the cylinder of a car engine is at a pressure of $1.1 \times 10^5\text{Pa}$ and a temperature of 27 °C. The air is suddenly sed, so that no thermal energy enters or leaves the gas, to a volume of 30cm^3 . The rises to $6.5 \times 10^6\text{Pa}$. | | |---|------------|-------------------------|--|--| | | (a) | Dete | ermine the temperature of the gas after the compression. | temperature = K [3] | | | | (b) | (i) | State and explain the first law of thermodynamics. | [2] | | | | | (ii) | Use the law to explain why the temperature of the air changed during the compression. |[4] 6 (a) On Fig. 2.1, place a tick ✓) against those changes where the internal energy of the body is increasing. [2] | water freezing at constant temperature | | |---|--| | a stone falling under gravity in a vacuum | | | water evaporating at constant temperature | | | stretching a wire at constant temperature | | Fig. 2.1 (b) A jeweller wishes to harden a sample of pure gold by mixing it with some silver so that the mixture contains 5.0% silver by weight. The jeweller melts some pure gold and then adds the correct weight of silver. The initial temperature of the silver is 27 °C. Use the data of Fig. 2.2 to calculate the initial temperature of the pure gold so that the final mixture is at the melting point of pure gold. | | gold | silver | |---|------|--------| | melting point / K | 1340 | 1240 | | specific heat capacity (solid or liquid) / J kg ⁻¹ K ⁻¹ | 129 | 235 | | specific latent heat of fusion / kJ kg ⁻¹ | 628 | 105 | Fig. 2.2 | . , | Suggest a suitable thermometer for the measurement of the initial temperature of the gold in (b) . | Э | |-----|---|---| | | [1 |] | 7 | A kettle is rated as 2.3kW . A mass of 750g of water at 20°C is poured into the kettle. When the kettle is switched on, it takes 2.0 minutes for the water to start boiling. In a further 7.0 minutes, one half of the mass of water is boiled away. | |--| | (a) Estimate, for this water, | | (i) the specific heat capacity, | | | | | | | | | | | | specific heat capacity = | | (ii) the specific latent heat of vaporisation. | | | | | | | | | | | | specific latent heat = | | [5] | | (b) State one assumption made in your calculations, and explain whether this will lead to an overestimation or an underestimation of the value for the specific latent heat. | | | | | | [2] | | |