Group 2 # **Question Paper 5** | Level | International A Level | |------------|-----------------------| | Subject | Chemistry | | Exam Board | CIE | | Topic | Group 2 | | Sub-Topic | | | Paper Type | Theory | | Booklet | Question Paper 5 | Time Allowed: 51 minutes Score: /42 Percentage: /100 #### **Grade Boundaries:** | A* | Α | В | С | D | E | U | |------|--------|-----|-------|-------|-----|------| | >85% | 777.5% | 70% | 62.5% | 57.5% | 45% | <45% | | 1 | an
Bas | rium ions are poisonous. Patients with digestive tract problems are sometimes given X-ray after they have swallowed a 'barium meal', consisting of a suspension of SO_4 in water. The $[Ba^{2+}(aq)]$ in a saturated solution of $BaSO_4$ is too low to cause blems of toxicity. | | | | | | | | |---|-----------|--|--|--|--|--|--|--|--| | | (i) | Write an expression for the solubility product, $K_{\rm sp}$, for ${\rm BaSO_4}$, including its units. | | | | | | | | | | (ii) | The numerical value of $K_{\rm sp}$ is $1.30\times 10^{-10}.$ Calculate [Ba ²⁺ (aq)] in a saturated solution of BaSO ₄ . | (iii) | The numerical value of $K_{\rm sp}$ for BaCO $_3$ (5 × 10 ⁻¹⁰) is not significantly higher than that for BaSO $_4$, but barium carbonate is very poisonous if ingested. Suggest a reason why this might be so. | | | | | | | | | | | [3] | | | | | | | | | | 0.0 | useful commercial source of magnesium is sea water, where $[{\rm Mg}^{2+}({\rm aq})]$ is $54{\rm moldm}^{-3}$. The magnesium is precipitated from solution by adding calcium lroxide. | | | | | | | | | | | $Mg^{2+}(aq) + Ca(OH)_2(s) \longrightarrow Ca^{2+}(aq) + Mg(OH)_2(s)$ | | | | | | | | | | (i) | Write an expression for the $K_{\rm sp}$ of ${\rm Mg(OH)}_2$, including its units. | | | | | | | | | | (ii) | The numerical value for $K_{\rm sp}$ is 2.00 x 10 ⁻¹¹ . Calculate [Mg ²⁺ (aq)] in a saturated solution of Mg(OH) ₂ . | (iii) | | e the maximum
is method can ext | - | original magnesium in the | |-----|-------|-----------------------------|---|---|--| | | | | | | | | | | | | | [5] | | (c) | The | magnesium ions | s in seawater are i | mainly associated w | rith chloride ions. | | | (i) | Use the following reaction. | ng $\Delta H_{\mathrm{f}}^{\mathrm{e}}$ values to | calculate a value | for the ΔH^{\oplus} of the following | | | | М | $gCl_2(s) \longrightarrow$ | Mg ²⁺ (aq) + 2C <i>l</i> ⁻ (a | q) | | | | | species | ∆H ^e /kJ mol ⁻¹ | | | | | | MgCl ₂ (s) | -641 | | | | | | Mg ²⁺ (aq) | -467 | | | | | | Cl- (aq) | -167 | (ii) | Use your answe | er to explain why N | ${ m MgC}l_2$ is very soluble | e in water. | | | | | | | [2] | | (d) | | | • | are soluble in water
as the group is des | . The same is not true of their | | | | | the variation in roup from magnes | | ulphates of the elements in | [2] | | | | | | | [Total : 12] | [Total : 12] ### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ | 2 | With the prospect that fossil fuels will become increasingly scarce in the future, many | |---|--| | | compounds are being considered for use in internal combustion engines. One of these is | | | DME or dimethyl ether, CH ₃ OCH ₃ . DME is a gas which can be synthesised from methanol. | | | Methanol can be obtained from biomass, such as plant waste from agriculture. | | (a) | Define, with the aid of an equation which includes state symbols, the standard enthalpy | |-----|---| | | change of combustion, ΔH_c^{\bullet} , for DME at 298 K. | | |
 |
 |
 | [3] | |------------|------|-----------|------|-----| | |
 |
 |
 | | | | | | | | | definition |
 |
 |
 | | | equation |
 |
••••• |
 | | | equation | | | | | **(b)** DME may be synthesised from methanol. Relevant enthalpy changes of formation, ΔH_{f}^{e} for this reaction are given in the table below. | compound | $\Delta H_{\rm f}^{\rm e}/{\rm kJmol^{-1}}$ | |--------------------------------------|---| | CH ₃ OH(I) | -239 | | CH ₃ OCH ₃ (g) | -184 | | H ₂ O(I) | -286 | Use these values to calculate $\Delta H_{\text{reaction}}^{\text{e}}$ for the synthesis of DME, using the following equation. Include a sign in your answer. $$2CH_3OH(I) \rightarrow CH_3OCH_3(g) + H_2O(I)$$ $$\Delta H_{\text{reaction}}^{\Theta} = \dots \text{kJ mol}^{-1}$$ | C) | DIV | ME and ethanol are isomers with the molecular formula $\mathrm{C_2H_6O}$. | | | | | | | | | | | | | | |-----|------|--|---------------------------------|--------------------|--|--|--|--|--|--|--|--|--|--|--| | | (i) | Draw the displayed formula of DME and of ethanol. | DME | ethanol | | | | | | | | | | | | | | | (ii) | What type of isomerism do DME and ethanol show? | [2] | | | | | | | | | | | | | (d) | DM | IE is a gas at room temperature whil | e ethanol is a liquid. | | | | | | | | | | | | | | | (i) | Which intermolecular force exists b to be a liquid at room temperature? | | ich causes ethanol | (ii) | Draw a diagram that clearly shows
Your diagram should show any lone
important. You should represent at | e pairs or dipoles present that | - | #### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ 3 (a) The diagram below shows an incomplete experimental set-up needed to measure the E_{cell} of a cell composed of the standard Cu²⁺/Cu electrode and an Ag⁺/Ag electrode. | (i) | State the chemical composition of | | |------|---|-----| | | solution A, | | | | electrode B. | | | (ii) | Complete the diagram to show the whole experimental set-up. | [4] | **(b)** The above cell is not under standard conditions, because the [Ag⁺] in a saturated solution of AgC l is much less than 1.0 mol dm⁻³. The $E_{\text{electrode}}$ is related to [Ag⁺] by the following equation. equation 1 $$E_{\text{electrode}} = E_{\text{electrode}}^{\text{e}} + 0.06 \log[Ag^{+}]$$ (i) Use the *Data Booklet* to calculate the $E_{\text{cell}}^{\text{e}}$ if the cell was operating under standard conditions. In the above experiment, the E_{cell} was measured at +0.17V. - (ii) Calculate the value of $E_{\rm electrode}$ for the Ag $^{+}$ /Ag electrode in this experiment. - (iii) Use equation 1 to calculate [Ag⁺] in the saturated solution. $$[Ag^{+}] = \dots mol dm^{-3}$$ | (c) | | Wr | ite a | n expi | essio | n for | K _{sp} | of sil | ver s | sulfa | te, A | g ₂ SC |) ₄ , ind | cludi | ng ui | nits. | | | | |-----|------|-----------------|--------|--------------------|--------|--------|--------------------|--------|-------|---------|-------|-------------------|----------------------|------------------------|---------|-------|---------|-------------------------|--------| | | | K _{sp} | , = | | | | | | | | | unit | s | | | | | | | | | | | | ilar ex
olution | | | | | | | | | ppo | site, | it is f | ound | that | [Ag+] | in a | | | (ii) | Ca | ılcula | te the | value | e of F | K _{sp} of | silve | er su | ılfate | V | ∧ _{sp} | = | | | | [3] | | (d) | | | | w the | | | | | | | | | | | | | | η NH ₃ (
 | (aq), | | | | | | | ••••• | [4] | | (e) | Des | crib | oe an | d expl | ain th | e tre | nd in | the | soluk | oilitie | s of | the s | ulfate | es of | the e | eleme | ents ir | n Grou | ıp II. | ••••• | | ••••• | | | | | | | | | | | | ••••• | [4] | [Total: 18]