Group 2

Question Paper 5

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Group 2
Sub-Topic	
Paper Type	Theory
Booklet	Question Paper 5

Time Allowed: 51 minutes

Score: /42

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1	an Bas	rium ions are poisonous. Patients with digestive tract problems are sometimes given X-ray after they have swallowed a 'barium meal', consisting of a suspension of SO_4 in water. The $[Ba^{2+}(aq)]$ in a saturated solution of $BaSO_4$ is too low to cause blems of toxicity.							
	(i)	Write an expression for the solubility product, $K_{\rm sp}$, for ${\rm BaSO_4}$, including its units.							
	(ii)	The numerical value of $K_{\rm sp}$ is $1.30\times 10^{-10}.$ Calculate [Ba ²⁺ (aq)] in a saturated solution of BaSO ₄ .							
	(iii)	The numerical value of $K_{\rm sp}$ for BaCO $_3$ (5 × 10 ⁻¹⁰) is not significantly higher than that for BaSO $_4$, but barium carbonate is very poisonous if ingested. Suggest a reason why this might be so.							
		[3]							
	0.0	useful commercial source of magnesium is sea water, where $[{\rm Mg}^{2+}({\rm aq})]$ is $54{\rm moldm}^{-3}$. The magnesium is precipitated from solution by adding calcium lroxide.							
		$Mg^{2+}(aq) + Ca(OH)_2(s) \longrightarrow Ca^{2+}(aq) + Mg(OH)_2(s)$							
	(i)	Write an expression for the $K_{\rm sp}$ of ${\rm Mg(OH)}_2$, including its units.							
	(ii)	The numerical value for $K_{\rm sp}$ is 2.00 x 10 ⁻¹¹ . Calculate [Mg ²⁺ (aq)] in a saturated solution of Mg(OH) ₂ .							

	(iii)		e the maximum is method can ext	-	original magnesium in the
					[5]
(c)	The	magnesium ions	s in seawater are i	mainly associated w	rith chloride ions.
	(i)	Use the following reaction.	ng $\Delta H_{\mathrm{f}}^{\mathrm{e}}$ values to	calculate a value	for the ΔH^{\oplus} of the following
		М	$gCl_2(s) \longrightarrow$	Mg ²⁺ (aq) + 2C <i>l</i> ⁻ (a	q)
			species	∆H ^e /kJ mol ⁻¹	
			MgCl ₂ (s)	-641	
			Mg ²⁺ (aq)	-467	
			Cl- (aq)	-167	
	(ii)	Use your answe	er to explain why N	${ m MgC}l_2$ is very soluble	e in water.
					[2]
(d)			•	are soluble in water as the group is des	. The same is not true of their
			the variation in roup from magnes		ulphates of the elements in
					[2]
					[Total : 12]

[Total : 12]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2	With the prospect that fossil fuels will become increasingly scarce in the future, many
	compounds are being considered for use in internal combustion engines. One of these is
	DME or dimethyl ether, CH ₃ OCH ₃ . DME is a gas which can be synthesised from methanol.
	Methanol can be obtained from biomass, such as plant waste from agriculture.

(a)	Define, with the aid of an equation which includes state symbols, the standard enthalpy
	change of combustion, ΔH_c^{\bullet} , for DME at 298 K.

	 	 	 	[3]
definition	 	 	 	
equation	 	 •••••	 	
equation				

(b) DME may be synthesised from methanol. Relevant enthalpy changes of formation, ΔH_{f}^{e} for this reaction are given in the table below.

compound	$\Delta H_{\rm f}^{\rm e}/{\rm kJmol^{-1}}$
CH ₃ OH(I)	-239
CH ₃ OCH ₃ (g)	-184
H ₂ O(I)	-286

Use these values to calculate $\Delta H_{\text{reaction}}^{\text{e}}$ for the synthesis of DME, using the following equation. Include a sign in your answer.

$$2CH_3OH(I) \rightarrow CH_3OCH_3(g) + H_2O(I)$$

$$\Delta H_{\text{reaction}}^{\Theta} = \dots \text{kJ mol}^{-1}$$

C)	DIV	ME and ethanol are isomers with the molecular formula $\mathrm{C_2H_6O}$.													
	(i)	Draw the displayed formula of DME and of ethanol.													
		DME	ethanol												
	(ii)	What type of isomerism do DME and ethanol show?													
				[2]											
(d)	DM	IE is a gas at room temperature whil	e ethanol is a liquid.												
	(i)	Which intermolecular force exists b to be a liquid at room temperature?		ich causes ethanol											
	(ii)	Draw a diagram that clearly shows Your diagram should show any lone important. You should represent at	e pairs or dipoles present that	-											

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3 (a) The diagram below shows an incomplete experimental set-up needed to measure the E_{cell} of a cell composed of the standard Cu²⁺/Cu electrode and an Ag⁺/Ag electrode.

(i)	State the chemical composition of	
	solution A,	
	electrode B.	
(ii)	Complete the diagram to show the whole experimental set-up.	[4]

(b) The above cell is not under standard conditions, because the [Ag⁺] in a saturated solution of AgC l is much less than 1.0 mol dm⁻³. The $E_{\text{electrode}}$ is related to [Ag⁺] by the following equation.

equation 1
$$E_{\text{electrode}} = E_{\text{electrode}}^{\text{e}} + 0.06 \log[Ag^{+}]$$

(i) Use the *Data Booklet* to calculate the $E_{\text{cell}}^{\text{e}}$ if the cell was operating under standard conditions.

In the above experiment, the E_{cell} was measured at +0.17V.

- (ii) Calculate the value of $E_{\rm electrode}$ for the Ag $^{+}$ /Ag electrode in this experiment.
- (iii) Use equation 1 to calculate [Ag⁺] in the saturated solution.

$$[Ag^{+}] = \dots mol dm^{-3}$$

(c)		Wr	ite a	n expi	essio	n for	K _{sp}	of sil	ver s	sulfa	te, A	g ₂ SC) ₄ , ind	cludi	ng ui	nits.			
		K _{sp}	, =									unit	s						
				ilar ex olution									ppo	site,	it is f	ound	that	[Ag+]	in a
	(ii)	Ca	ılcula	te the	value	e of F	K _{sp} of	silve	er su	ılfate									
														V					
														∧ _{sp}	=				[3]
(d)				w the														η NH ₃ ((aq),
					•••••														
																			[4]
(e)	Des	crib	oe an	d expl	ain th	e tre	nd in	the	soluk	oilitie	s of	the s	ulfate	es of	the e	eleme	ents ir	n Grou	ıp II.
			•••••		•••••												•••••		
																			[4]

[Total: 18]