Group 7 # **Question Paper 2** | Level | International A Level | |------------|-----------------------| | Subject | Chemistry | | Exam Board | CIE | | Topic | Group 7 | | Sub-Topic | | | Paper Type | Theory | | Booklet | Question Paper 2 | Time Allowed: 75 minutes Score: /62 Percentage: /100 #### **Grade Boundaries:** | A* | Α | В | С | D | E | U | |------|--------|-----|-------|-------|-----|------| | >85% | 777.5% | 70% | 62.5% | 57.5% | 45% | <45% | For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ - 1 The elements of Group VII of the Periodic Table show variation in their properties. - (a) (i) Complete the table below, stating the colour of each element in its normal state at room temperature. | halogen | melting point/°C | colour | |----------|------------------|--------| | chlorine | -101 | | | bromine | – 7 | | | iodine | 114 | | | (ii) | Briefly explain why iodine. | y the melting | points of the | halogens in | ncrease from | chlorine to | |------|-----------------------------|---------------|---------------|-------------|--------------|-------------| [4] | - **(b)** The halogens form many interhalogen compounds in which two different halogens are combined. One such compound is bromine monochloride, BrC1. - (i) Complete the electronic configurations of chlorine and bromine. | chlorine | 1s ² 2s ² 2p ⁶ | |----------|---| | bromine | 1s ² 2s ² 2p ⁶ | (ii) Draw a 'dot-and-cross' diagram of the BrC*l* molecule. Show outermost electrons only. | (c) | Inte | rhalogen compounds like BrC l have similar properties to the halogens. | |-----|--------|---| | | (i) | By considering your answers to (a) and (b) , predict the physical state of $BrCl$ at room temperature. Explain your answer. | | | | physical state | | | | explanation | | | | | | | | | | | (ii) | Suggest the colour of BrC1. | | | | | | | | [4] | | (d) | Cl_2 | and BrCl each react with aqueous KI. | | | (i) | Describe what would be seen when $\mathrm{C}\mathit{l}_{2}$ is bubbled through aqueous KI for several minutes. | | | | initially | | | | | | | | after several minutes | | | | | | | (ii) | Construct an equation for the reaction that occurs. | | | | | | | (iii) | Suggest an equation for the reaction that occurs between BrC1 and aqueous KI. | | | ` , | | | | (iv) | How do Cl_2 and $BrCl$ behave in these reactions? | | | | | | | | [5] | | | | | [Total: 15] | 2 (a) | Writ | e equations, with state symbols, to definethefollowing. | |-------|------|---| | | (i) | the C–Br bond energy in CH ₃ Br | | | (ii) | the A l –C l bond energy in A l C l_{3} | | | | [3] | | (b) |) | Describe and explain the trend in bond energies of the bonds in ${\rm C}l_{\rm 2}$, ${\rm Br_2}$ and ${\rm I_2}$. | | | | | | | | | | | (ii) | Fluorine, F ₂ , does not follow this trend.
Suggest a possible reason why. | | | | | | | | | | (c) | l | Use data from the <i>Data Booklet</i> to calculate the enthalpy change of the following reaction. | | | | $H_2(g) + X_2(g) \rightarrow 2HX(g)$ | | | | when $X = Cl$ | | | | $\Delta H = \dots kJ \text{ mol}^{-1}$ | | | | when $X = I$ | | | | $\Delta H = \dots kJ \text{ mol}^{-1}$ | | | (ii) | Use these results to describe and explain the trend in the thermal stabilities of the hydrides of Group VII. | | | | | | | | | | | | | (d) Bromine reacts with hot NaOH(aq) to give a solution which on cooling produces white | | • | stals of compound A . as the following percentage composition by mass: Na, 15.2; O, 31.8; Br, | 53.0. | |---|------|--|-------------| | | The | e remaining solution contains mostly NaBr, with a little of compound A. | | | | (i) | Calculate the empirical formula of A. | /::\ | | | | (| (ii) | Construct an equation for the reaction between Br ₂ and hot NaOH(aq). | | | | | | [4] | | | | | [Total: 15] | | | | | | For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ - **3 (a)** Bromine reacts with a variety of organic compounds. For each of the following reactions, - complete and **balance the equation**, including the structural formula of the organic product, - state the specific conditions (if any) under which the reaction takes place and the *type of reaction* that occurs. reaction conditions type of reaction reaction conditions type of reaction reaction conditions type of reaction For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ **(b)** When hydrocarbon **B** is heated with concentrated manganate(VII) ions, three organic compounds, **C**, **D** and **E**, are formed. - (i) Suggest the identities of compounds **C**, **D** and **E**, drawing their structures in the boxes above. - (ii) Use the relevant letter, C, D or E, to identify which of your compounds will react with each of the following reagents. Each reagent may react with more than one of C, D and E, in which case state all the compounds that may react with each reagent. 2,4-dinitrophenylhydrazine - alkaline aqueous iodine - aqueous sodium hydroxide [6] [Total: 16] | 4 | The ele | ements of the third period of the Periodic Table, sodium to sulfur, all form chlorides by | |---|----------|--| | | direct c | ombination. | | | (a) (i) | Sulfur forms a number of chlorides which are liquid at room temperature. Which other element of the third period forms a chloride which is liquid at room temperature? | | | | | | | (ii) | Name one element of the third period which burns in chlorine with a coloured flame. | | | | | | | (iii) | Aluminium chloride may be produced by passing a stream of chlorine over heated aluminium powder in a long hard-glass tube. State two observations you could make during this reaction. | | | | and | | | (iv) | Write a balanced equation, with state symbols, for this reaction of aluminium with chlorine. | | | | | | | (v) | No chloride of argon has ever been produced.
Suggest a reason for this. | | | | | | | | [7] | | | | [/] | For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ - **(b)** When chlorides of the elements of the third period are added to water, some simply dissolve while others can be seen to react with the water. - (i) Complete the table below, stating how the chlorides of Na, A*l*, and Si behave when mixed with water. In the first column use only the terms 'dissolve' or 'react'. | element | Does the chloride dissolve or react? | approximate pH of the resulting solution | |---------|--------------------------------------|--| | Na | | | | Al | | | | Si | | | | (II) What type of reaction takes place between a chloride and water? | (ii) | What type of reaction takes place between a chloride and water | ? | |--|------|--|---| |--|------|--|---| |
 |
• | |------|---| [7] (c) Sulfur forms the compound S_4N_4 with nitrogen. The structure of S_4N_4 is shown below. Assume all bonds shown are single bonds. | (i) | Determine the number of lone p | airs of e | electrons aroun | d a nitrogen | atom and | a sulfur | |-----|---|-----------|-----------------|--------------|----------|----------| | | atom in S ₄ N ₄ . | | | | | | | nitrogen atom | | |---------------|--| | aulfur atom | | (ii) Which bond angle, a or b, in the S_4N_4 molecule will be smaller? Explain your answer. |
 | |------| | [2] | [Total: 16]