# **Density and Pressure**

# Question paper 3

| Level      | IGCSE(9-1)                |
|------------|---------------------------|
| Subject    | Physics                   |
| Exam Board | Edexcel IGCSE             |
| Module     | Double Award (Paper 1P)   |
| Topic      | Solids, Liquids and Gases |
| Sub-Topic  | Density and Pressure      |
| Booklet    | Question paper 3          |

Time Allowed: 50 minutes

Score: /41

Percentage: /100

#### **Grade Boundaries:**

| A*   | Α    | В   | С   | D   | E   | U    |
|------|------|-----|-----|-----|-----|------|
| >85% | '75% | 70% | 60% | 55% | 50% | <50% |

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 The LR5 is a specialist submarine for underwater rescues.



| The av | verage | density | of sea | water i | is | 1028 | kg/r | $n^3$ . |
|--------|--------|---------|--------|---------|----|------|------|---------|
|        |        |         |        |         |    |      |      |         |



(1)

(ii) Calculate the increase in pressure as the LR5 descends from the surface to a depth of 700 m.

(2)

(iii) Atmospheric pressure is  $1.0 \times 10^5$  Pa.

Calculate the total pressure on the LR5 when it is at a depth of 700 m.

(1)

| (b) On another of | descent, the LR5 experiences a                        | a total pressure of $41 \times 10^5$ Pa. |         |
|-------------------|-------------------------------------------------------|------------------------------------------|---------|
| The entrance      | e to the LR5 is through an acce                       | ess door which has an area of 3.1        | $m^2$ . |
| (i) State the     | equation linking pressure, for                        | rce and area.                            | (1)     |
| (ii) Calculate    | e the force on the outside of th                      | ne door.                                 | (3)     |
|                   |                                                       |                                          |         |
|                   |                                                       | force =                                  | N       |
| (c) The LR5 is te | sted in fresh water.                                  |                                          |         |
| The density       | of fresh water is 1000 kg/m³.                         |                                          |         |
|                   | the pressure on the submarin<br>ea at the same depth. | e in the fresh water is less than th     | ne      |
|                   |                                                       |                                          | (1)     |
|                   |                                                       |                                          |         |
|                   |                                                       |                                          |         |
|                   |                                                       |                                          |         |

(d) A student is given a sample of liquid labelled sea water.



Describe an experiment that the student could carry out to find the density of the sample.

(5)

| (Total for Question 1 = 14 marks) |
|-----------------------------------|
|                                   |
|                                   |
| <br>                              |
| <br>                              |
|                                   |
|                                   |
|                                   |
|                                   |
|                                   |
| <br>                              |
|                                   |

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

2 A student places a pile of coins on a table, as shown in photograph A.



Photograph A

There are 8 coins in the pile.

The weight of each coin is 0.036 N.

The area of each coin is 0.0013 m<sup>2</sup>.

(a) (i) State the equation linking pressure, force and area.

(1)

(ii) Calculate the pressure on the table caused by the pile of coins.

(2)

Pressure = ..... Pa

(b) The student then spreads the 8 coins out on the table as shown in photograph **B**.



Photograph **B** 

| (i)      | Describe how this affects the total force from the coins on the table.  | (2) |
|----------|-------------------------------------------------------------------------|-----|
| <br>     |                                                                         |     |
| <br>     |                                                                         |     |
| <br>     |                                                                         |     |
| (ii)     | Explain how this affects the pressure on the table caused by the coins. | (2) |
| <br>(ii) | Explain how this affects the pressure on the table caused by the coins. | (2) |

(Total for Question 2 = 7 marks)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3 The diagram shows a can that produces whipped cream using gas at high pressure.



The volume of the high pressure gas container is 10 cm<sup>3</sup>.

The pressure of the gas is 10 000 kPa.

When the seal at **S** is broken, the gas is released into the space above the cream.

The gas expands to a total volume of 270 cm<sup>3</sup>.

(a) Calculate the new pressure of the gas.

(2)

| 240661140  | kPa |
|------------|-----|
| Pressure = | KP2 |

| (b) As the gas expands into the space above the cream, its temperature decreases.                                                              |      |
|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <br>Using ideas about molecules, explain how this affects the pressure of the gas.                                                             | (3)  |
|                                                                                                                                                |      |
|                                                                                                                                                |      |
|                                                                                                                                                |      |
| (c) Some of the gas molecules dissolve into the cream.                                                                                         |      |
| <br>(i) Suggest how this affects the pressure of the gas in the space above the cream.                                                         | (2)  |
|                                                                                                                                                |      |
|                                                                                                                                                |      |
| (ii) When the tap is opened, the pressure of the gas forces the cream out of the sp<br>The pressure outside the can is less than it is inside. | out. |
| <br>Suggest what happens to the dissolved gas as the cream leaves the can.                                                                     | (1)  |
|                                                                                                                                                |      |
|                                                                                                                                                |      |

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

**4** Aneroid barometers are used to measure air pressure.

A student makes a model aneroid barometer as shown.



(a) (i) The balloon fabric is attached to the can to stop the air escaping.

| Explain how the air inside the can causes a pressure on the balloon fabric. |     |
|-----------------------------------------------------------------------------|-----|
|                                                                             | (3) |
|                                                                             |     |
|                                                                             |     |
|                                                                             |     |
|                                                                             |     |
|                                                                             |     |
|                                                                             |     |
|                                                                             |     |
|                                                                             |     |
|                                                                             |     |
|                                                                             |     |
|                                                                             |     |
|                                                                             |     |
|                                                                             |     |

(ii) The balloon fabric is tight and flat. The pointer is horizontal as shown.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Explain what happens to the different parts of the model when the atmospheric pressure increases. [You may assume that the temperature remains constant.] (4)(iii) Suggest two ways that the model could be altered to increase its sensitivity to changes in atmospheric pressure. (2)

| (b) The student heats the air in her can by placing the can in a water bath. |     |
|------------------------------------------------------------------------------|-----|
| (i) State how this affects the reading shown by the pointer.                 | (1) |
|                                                                              |     |
| (ii) Explain why this happens.                                               | (2) |
|                                                                              |     |
|                                                                              |     |
| /T-4-15 O4' A - 4                                                            | 2   |

(Total for Question 4 = 12 marks)