Group 7

Question Paper 4

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Group 7
Sub-Topic	
Paper Type	Theory
Booklet	Question Paper 4

Time Allowed: 70 minutes

Score: /58

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1	(a) Th	e halogens chlorine and bromine react readily with hydrogen.
		$X_2(g) + H_2(g) \rightarrow 2HX(g)$ [X = Cl or Br]
	(i)	Describe how you could carry out this reaction using chlorine.
	(ii)	Describe two observations you would make if this reaction was carried out with bromine.
	(iii)	Use bond energy data from the ${\it Data Booklet}$ to calculate the $\Delta {\it H}^{\rm e}$ for this reaction when
		X = Cl,
		$\Delta H^{\Theta} = \dots kJ \text{mol}^{-1}$
		X = Br.
		$\Delta H^{\Theta} = \dots kJ \text{mol}^{-1}$
	(iv)	What is the major reason for the difference in these two ΔH^{Θ} values?
		[8]

(b)	Son	ne halogens also react readily with methane.
		$CH_4(g) + X_2(g) \rightarrow CH_3X(g) + HX(g)$
	(i)	What conditions are needed to carry out this reaction when X is bromine, Br?
	(ii)	Use bond energy data from the <i>Data Booklet</i> to calculate the ΔH^{Φ} of this reaction for the situation where X is iodine, I.
		$\Delta H^{\Theta} = \dots kJ \text{mol}^{-1}$
	(iii)	Hence suggest why it is not possible to make iodomethane, CH_3I , by this reaction.
(c)	Hale	[4] ogenoalkanes can undergo <i>homolytic fission</i> in the upper atmosphere.
	(i)	Explain the term homolytic fission.
	(ii)	Suggest the most likely organic radical that would be formed by the homolytic fission of bromochloromethane, CH ₂ BrC1. Explain your answer.
		[3]
(d)	four Dra	reaction between propane and chlorine produces a mixture of many compounds of which are structural isomers with the molecular formula $\rm C_3H_6C\it l_2$. w the structural or skeletal formulae of these isomers, and indicate any chiral atoms an asterisk (*).

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2 The gaseous hydrogen halides HC*l*, HBr and HI, may be prepared by reacting the corresponding sodium salt with anhydrous phosphoric(V) acid, H₃PO₄.

When the sodium halide NaX was used, the following reaction occurred and a sample of gaseous HX was collected in a gas jar.

$$NaX + H_3PO_4 \rightarrow NaH_2PO_4 + HX$$

A hot glass rod was placed in the sample of ${\sf H}{\sf X}$ and immediately a red/orange colour was observed.

(a)	What is the identity of NaX?
	[1]
(b)	What gas, other than HX , would be formed if concentrated sulfuric acid were used with NaX instead of phosphoric(V) acid?
	[1]
(c)	Suggest why phosphoric (V) acid rather than concentrated sulfuric acid is used to make samples of HX from the corresponding sodium salt. Explain your answer.
	[1]

[Total: 3]

3	(a)		the observations you would make when concentrated sulfuric acid is added e portions of NaC $l(s)$ and NaBr(s). Write an equation for each reaction that
		NaCl(s):	observation
			equation
		NaBr(s):	observation
			equation
			[4]
	(b)		g relevant E^{Θ} data from the <i>Data Booklet</i> , explain how the observations you ribed above relate to the relative oxidising power of the elements.
			[2]
	(c)		g to relevant $E^{\rm e}$ data choose a suitable reagent to convert ${\rm Br}_2$ into ${\rm Br}^-$. Write on and calculate the $E^{\rm e}$ for the reaction.
			[3]
			[Total: 9]

differ.

(a) Describe and explain how the basicities of ammonia, ethylamine and phenylamine

	NH_3	CH₃C⊦	H ₂ NH ₂		
	ammonia	ethyla	mine	phenylam	ine
					[3
	queous solutions	-		-	ammonia can distinguisl dide ions by filling in the
halide	vatic AgNO ₃ (aq)	on when is added	dilute N	ation when NH ₃ (aq) is dded	observation when concentrated NH ₃ (aq) is added
chloride					
bromide					
iodide					
					[3
Silver brom	nide is sparingly	soluble in w	ater.		
AgB	sr(s) ⇌ Ag+(ad	ק) + Br [–] (aq	$K_{\rm sp} =$:5 × 10 ^{−13} m	$100^2 \mathrm{dm}^{-6}$
(i) Calcul	ate [Ag+(aq)] in	a saturated	aqueous s	solution of AgE	Br.
			[/	$Ag^+(aq)] =$	mol dm ⁻
	and explain whe		will be less	s or more sol	uble in 0.1 mol dm ⁻³ KB
					[2

(d)	Silv	er ions form complexes with ammonia and with amines.
		$Ag^{+}(aq) + 2RNH_{2}(aq) \rightleftharpoons [Ag(RNH_{2})_{2}]^{+}(aq)$
	(i)	Write an expression for the $K_{\rm c}$ for this reaction, and state its units.
		K_{c} = units
		$K_{\rm c}$ has the numerical value of 1.7 × 10 ⁷ when R = H.
	(ii)	Using your expression for K_c calculate the [NH $_3$ (aq)] needed to change the [Ag $^+$ (aq)] in a 0.10 mol dm $^{-3}$ solution of silver nitrate to the value that you calculated in (c)(i) .
		$[NH_3(aq)] = \dots mol dm^{-3}$
	(iii)	Explain whether you would expect the $K_{\rm c}$ for the reaction where R = ${\rm C_2H_5}$ to be greater or less than that for the reaction where R = H.
		[5]
		[Total: 13]

5

This	s que	estion is about the e	elements of Group VII, t	he halogens.	
(a)	Cor	nplete the following	table.		
					1
		halogen	colour	physical state at room temperature	
		chlorine			
		bromine			
		iodine			[2]
(b)	Cor	ncentrated sulphurid	c acid is added to sepa	rate solid samples of mag	
(2)			and magnesium iodide.	rato coma campios of ma;	gricolarii oriioriae,
	(i)	Describe, in each	case, one observation	you would be able to ma	ake.
		MaC/			
		got2			
		MgBr ₂			
		MgI ₂			
		5 2			
	(ii)	Give an equation chloride.	for the reaction of con	centrated sulphuric acid	with magnesium
					[4]
(c)	Wh	en dilute nitric acid	and aqueous silver nitra	ate are added to a solution	n of a magnesium
(-)	hali	de, Mg X_2 , a pale cr	eam precipitate is form	ied.	-
		s precipitate is soit leous ammonia.	ible in concentrated ac	queous ammonia but no	t soluble in dilute
	(i)	What is the identit	y of the precipitate?		
	(.,	vviidt io aro idorial	y or the predipitate.		
	(ii)	Give an equation concentrated aque	-	for the reaction of the	e precipitate with
		concentrated aque	Jous ammonia.		
					[3]

)		ot glass rod is plunged into separate gas jars, one containing hydrogen chloride and containing hydrogen iodide.
	(i)	For each gas, state what you would observe, if anything, and write an equation for any reaction that takes place.
		HC <i>l</i>
		HI
	(ii)	Explain your answer to (i) in terms of enthalpy changes.
((iii)	What is the role of the hot glass rod in any reaction that occurs?
		[6]
		[Total: 15]