An Introduction to the Chemistry of the Transition Elements #### **Question Paper 1** | Level | International A Level | |------------|--| | Subject | Chemistry | | Exam Board | CIE | | Topic | An Introduction to the Chemistry of the Transition
Elements | | Sub-Topic | | | Paper Type | Theory | | Booklet | Question Paper 1 | Time Allowed: 66 minutes Score: /55 Percentage: /100 #### **Grade Boundaries:** | A* | Α | В | С | D | E | U | |------|--------|-----|-------|-------|-----|------| | >85% | 777.5% | 70% | 62.5% | 57.5% | 45% | <45% | | 1 | | mmonest form of iron(II) sulfate is the heptahydrate, $FeSO_4.7H_2O$. On heating at 90 ses some of its water of crystallisation to form a different hydrated form of iron(II) sulfated H_2O . | | |---|----------|---|-----| | | 3.40 g o | f FeSO ₄ .xH ₂ O was dissolved in water to form 250 cm ³ of solution. | | | | | cm 3 sample of this solution was acidified and titrated with $0.0200\mathrm{moldm^{-3}}$ potassiuate(VII). | ım | | | | tration 20.0cm^3 of this potassium manganate(VII) solution was required to react fully will ions present in the sample. | ith | | | (a) The | 2 MnO $_{4}^{-}$ ions in the potassium manganate(VII) oxidise the Fe $^{2+}$ ions in the acidified solution | n. | | | (i) | Explain, in terms of electron transfer, the meaning of the term <i>oxidise</i> in the sentendabove. | се | | | | | | | | (ii) | Complete and balance the ionic equation for the reaction between the manganate (V) ions and the iron(II) ions. | II) | | | | $MnO_4^-(aq) \ + \ 5Fe^{2+(aq)} \ + \H^+(aq) \ \rightarrow \(aq) \ + \ 5Fe^{3+(aq)} \ + \H_2O(I)$ | [3] | | | (b) | Calculate the number of moles of manganate(VII) used in the titration. | | | | | | [1] | | | (ii) | Use the equation in (a)(ii) and your answer to (b)(i) to calculate the number of moles Fe ²⁺ present in the 25.0 cm ³ sample of solution used. | of | | | | | [1] | | | (iii) | Calculate the number of moles of FeSO ₄ .xH ₂ O in 3.40 g of the compound. | | | | | | [1] | | | (iv) | Calculate the relative formula mass of FeSO ₄ .xH ₂ O. | | | | | | [1] | | | (v) | The relative formula mass of anhydrous iron(II) sulfate, FeSO ₄ , is 151.8. | | Calculate the value of x in FeSO₄.xH₂O. | 2 | | g sample of hydrated ethanedioic acid, $H_2C_2O_4.xH_2O$, was dissolved in water and the made up to 250 cm ³ . | |---|---------------|--| | | mangan | cm³ sample of this solution was acidified and titrated with $0.100\mathrm{moldm^{-3}}$ potassium rate(VII) solution. $20.0\mathrm{cm^3}$ of this potassium manganate(VII) solution was required to ly with the ethanedioate ions, $\mathrm{C_2O_4^{2^-}}$, present in the sample. | | | (a) The | e MnO ₄ ions in the potassium manganate(VII) oxidise the ethanedioate ions. | | | (i) | Explain, in terms of electron transfer, the meaning of the term <i>oxidise</i> in the sentence above. | | | | | | | | [1] | | | (ii) | Complete and balance the ionic equation for the reaction between the manganate (VII) ions and the ethanedioate ions. | | | | $2MnO_4^-(aq) \ + \ 5C_2O_4^{2-}(aq) \ + \ \dots \dots \\ H^+(aq) \ \to \ \dots \dots \\ (aq) \ + \ 10CO_2(aq) \ + \ \dots \\ H_2O(I) $ | | | (b) | Calculate the number of moles of manganate(VII) used in the titration. | | | | [1] | | | (ii) | Use the equation in (a)(ii) and your answer to (b)(i) to calculate the number of moles of $C_2O_4^{2-}$ present in the 25.0 cm ³ sample of solution used. | | | | | | | /::: \ | | | | (111) | Calculate the number of moles of $H_2C_2O_4$. xH_2O in 6.30 g of the compound. | | | | [1] | | | (iv) | Calculate the relative formula mass of H ₂ C ₂ O ₄ .xH ₂ O. | | | | | | | | [1] | | | (v) | The relative formula mass of anhydrous ethanedioic acid, $H_2C_2O_4$, is 90. | | | | Calculate the value of x in $H_2C_2O_4.xH_2O$. | | | | ım | |---------------|--|--| | | | ng | | (a) Wr | ite the ionic equation for the reaction between ammonium ions and hydroxide ions. | | | | | [1] | | (b) (i) | Calculate the amount, in moles, of hydrochloric acid in 40.0 cm³ of 0.400 mol dm⁻³ solution | n. | | (ii) | | [1]
ss | | (iii) | Calculate the amount, in moles, of hydrochloric acid that reacted with ammonia. | [1] | | (iv) | | [1] | | (v) | | [1]
to | | (vi) | Calculate the $M_{\rm r}$ of Cu(NH ₄) _x (SO ₄) ₂ .6H ₂ O. | [2] | | | hydroxi The am solution (a) Wr (b) (i) (iii) | (ii) Calculate the amount, in moles, of sodium hydroxide needed to neutralise the exce acid. This will be equal to the amount of hydrochloric acid left in excess. (iii) Calculate the amount, in moles, of hydrochloric acid that reacted with ammonia. (iv) Calculate the amount, in moles, of ammonium ions in the sample of the double salt. (v) The sample contained 0.413 g of copper. Use this information and your answer to (iv) calculate the value of x in Cu(NH₄)_x(SO₄)₂.6H₂O. | | 4 | The ion | s of transition elements form complexes by | y reacting with <i>ligands</i> . | | | | |---|---------|---|--|--|--|--| | | (a) | State what is meant by the terms: | (ii) | Two of the complexes formed by copper are $[Cu(H_2O)_6]^{2+}$ and $CuCl_4^{2-}$. Draw three-dimensional diagrams of their structures in the boxes and name their shapes. | | | | | | | | [Cu(H ₂ O) ₆] ²⁺ | CuCl ₄ ²⁻ | | | | | | | shape: | shape: | | | | | | (iii) | the Pt atom. There are two isomeric complexes with the | ers, and, by comparison with a similar type of | | | | | | | | | | | | | | | isomer 1 | isomer 2 | | | | Type of isomerism: | (b) | - | opper forms two series of compounds, one containing copper (II) ions and the other containing opper (I) ions. | | | |-----|------|---|---|--------| | | (i) | Complete ti | he electronic structures of these ions. | | | | | Cu(II) | [Ar] | | | | | Cu(I) | [Ar] | | | | (ii) | Use these | electronic structures to explain why | | | | | copper(II) salts are usually coloured, | copper(I) sa | alts are usually white or colourless. | | | | | | | | | | | | [|
5] | #### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ (c) Copper(I) oxide and copper(II) oxide can both be used in the ceramic industry to give blue, green or red tints to glasses, glazes and enamels. The table lists the ΔH_f^{e} values for some compounds. | compound | $\Delta H_{\rm f}^{\rm e}/{\rm kJmol^{-1}}$ | |---------------------------------------|---| | Cu ₂ O(s) | -168.6 | | CuO(s) | -157.3 | | Cu(NO ₃) ₂ (s) | -302.9 | | NO ₂ (g) | +33.2 | (i) Copper(II) oxide can be produced in a pure form by heating copper(II) nitrate. Use suitable ΔH_f^e values from the table to calculate the ΔH^e for this reaction. $$Cu(NO_3)_2(s) \rightarrow CuO(s) + 2NO_2(g) + \frac{1}{2}O_2(g)$$ $\Delta H^{\circ} = \dots kJ \, \text{mol}^{-1}$ - (ii) Copper(I) oxide can be produced from copper(II) oxide. - Use suitable ΔH_f^{\bullet} values from the table to calculate ΔH^{\bullet} for the reaction. $$2CuO(s) \rightleftharpoons Cu_2O(s) + \frac{1}{2}O_2(g)$$ $\Delta H^{\text{e}} = \dots kJ \, \text{mol}^{-1}$ • Hence suggest whether a low or a high temperature of oxidation would favour the production of copper(I) oxide. Explain your reasoning. [4] [Total: 16] #### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ **5 (a)** Complete the electron configurationsforNiandNi ²⁺. **(b)** The presence of electrons in d orbitals is responsible for the colours of transition element compounds. | (i) | The d orbitals in an isolated transition metal atom or ion are all at the same energy level. | |-----|--| | | What term is used to describe orbitals that are at the same energy level? | | | | (ii) Complete the diagram to show the splitting of the d orbital energy levels in an octahedral complex ion. (iii) On the axes below, sketch the shapes of one d orbital from the lower energy level and one d orbital from the higher energy level. lower energy level higher energy level [2] | (c) | The octahedral complex $[Ni(H_2O)_6]^{2+}$ is green. Explain the origin of the colour of this complex. | |-----|---| | | | | | | | | | | | [3] | | | [-] | | (d) | When $NH_3(aq)$ is added to the green solution containing $[Ni(H_2O)_6]^{2+}$, a grey-green precipitate, $\bf A$, is formed. This precipitate dissolves in an excess of $NH_3(aq)$ to give a blue-violet solution, $\bf B$. Suggest formulae for $\bf A$ and $\bf B$ and write equations for the two reactions producing $\bf A$ and $\bf B$. | | | | | | | | | | | | [4] | | | [Total: 13] |