For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Wave Basics

Question paper 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Waves
Sub Topic	Wave Basics
Paper Type	Theory
Booklet	Question paper 3

Time Allowed: 76 minutes

Score: /63

Percentage: /100

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Fig. 5.1 shows the variation with time t of the displacements $x_{\rm A}$ and $x_{\rm B}$ at a point P of two sound waves A and B.

Fig. 5.1

(a)	By reference to Fig. 5.1, state one similarity and one difference between these waves.	two
	similarity:	
	difference:	. [2]
(b)	State, with a reason, whether the two waves are coherent.	

(c)	The	intensity of wave A alone at point P is I.
	(i)	Show that the intensity of wave B alone at point P is $\frac{4}{9}I$.
	(ii)	Calculate the resultant intensity, in terms of <i>I</i> , of the two waves at point P.
		resultant intensity = I [2]
(d)	Det	ermine the resultant displacement for the two waves at point P
	(i)	at time $t = 3.0 \mathrm{ms}$,
		resultant displacement = cm [1]
	(ii)	at time $t = 4.0 \mathrm{ms}$.
		resultant displacement = cm [2]

2

	e spectrum of electromagnetic waves is divided into a number of regions such as radio res, visible light and gamma radiation.
(a)	State three distinct features of waves that are common to all regions of the electromagnetic spectrum.
	1
	2
	3[3]
(b)	A typical wavelength of visible light is 495 nm. Calculate the number of wavelengths of this light in a wave of length 1.00 m.
	number =[2]
(c)	State a typical wavelength for
	(i) X-rays,
	wavelength = m
	(ii) infra-red radiation.
	wavelength = m [2]

3 Fig. 2.1 shows the variation with distance *x* along a wave of its displacement *d* at a particular time.

Fig. 2.1

The wave is a progressive wave having a speed of 330 m s⁻¹.

(a) (i) Use Fig. 2.1 to determine the wavelength of the wave.

(ii) Hence calculate the frequency of the wave.

(b) A second wave has the same frequency and speed as the wave shown in Fig. 2.1 but has double the intensity. The phase difference between the two waves is 180°.

On the axes of Fig. 2.1, sketch a graph to show the variation with distance x of the displacement d of this second wave. [2]

4 (a) Fig. 4.1 shows the variation with time *t* of the displacement *x* of one point in a progressive wave.

Fig. 4.1

Fig. 4.2 shows the variation with distance d along the same wave of the displacement x.

Fig. 4.2

- (i) Use Figs. 4.1 and 4.2 to determine, for this wave,
 - 1. the amplitude,

2. the wavelength,

3.	the frequency,	
4.	the speed.	frequency =Hz
		speed = m s ⁻¹ [6]
	Fig. 4.2, draw a second wave having that shown.	the same amplitude but half the frequency [1]

(ii)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b) Light of wavelength 590 nm is incident at right angles to a diffraction grating having 5.80×10^5 lines per metre, as illustrated in Fig. 4.3.

Fig. 4.3

A screen is placed parallel to and 1.50 m from the grating. Calculate

(i) the spacing, in µm, of the lines of the grating,

spacing = µm

(ii) the angle θ to the original direction of the light at which the first order diffracted image is seen,

angle =°

(iii)	the minimum length L of the screen so that both first order diffracted images may
	be viewed at the same time on the screen.

length =	 	 	 m
•			[5]

Save My Exams! – The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

The variation with time t of the displacement x of a point in a transverse wave T_1 is shown in Fig. 5.1. 5

Fig. 5.1

			1 ig. 3.1
(a)			ence to displacement and direction of travel of wave energy, explain what is y a transverse wave.
			[1]
(b)	lags		d transverse wave $\rm T_2$, of amplitude $\it A$ has the same waveform as wave $\rm T_1$ but lind $\rm T_1$ by a phase angle of 60°. The two waves $\rm T_1$ and $\rm T_2$ pass through the lint.
	(i)		Fig. 5.1, draw the variation with time t of the displacement x of the point in [2]
	(ii)	Exp	lain what is meant by the <i>principle of superposition</i> of two waves.
			[2]
	(iii)	For	the time $t = 1.0 \mathrm{s}$, use Fig. 5.1 to determine, in terms of A ,
		1.	the displacement due to wave T ₁ alone,
			displacement =
		2.	the displacement due to wave T ₂ alone,
			displacement =
		3.	the resultant displacement due to both waves.
			displacement =

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

6 (a) Two overlapping waves of the same type travel in the same direction. The variation with distance *x* of the displacement *y* of each wave is shown in Fig. 6.1.

Fig. 6.1

The speed of the waves is 240 m s⁻¹. The waves are coherent and produce an interference pattern.

(i)	Explain the meaning of <i>coherence</i> and <i>interference</i> .	
	coherence:	
	interference:	
		[2]

(ii) Use Fig. 6.1 to determine the frequency of the waves.

(iii) State the phase difference between the waves.

- (iv) Use the principle of superposition to sketch, on Fig. 6.1, the resultant wave. [2]
- (b) An interference pattern is produced with the arrangement shown in Fig. 6.2.

Fig. 6.2 (not to scale)

Laser light of wavelength λ of 546 nm is incident on the slits S_1 and S_2 . The slits are a distance 0.13 mm apart. The distance between the slits and the screen is 85 cm.

Two points on the screen are labelled A and B. The path difference between S_1A and S_2A is zero. The path difference between S_1B and S_2B is 2.5 λ . Maxima and minima of intensity of light are produced on the screen.

(i) Calculate the distance AB.

	distance = m [3
(ii)	The laser is replaced by a laser emitting blue light. State and explain the change in the distance between the maxima observed on the screen.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

7 (a) The Young modulus of the metal of a wire is 1.8×10^{11} Pa. The wire is extended and the strain

produced is 8.2×10^{-4} . Calculate the stress in GPa.

stress =	GPa [2]

- **(b)** An electromagnetic wave has frequency 12THz.
 - (i) Calculate the wavelength in μ m.

(c) An object B is on a horizontal surface. Two forces act on B in this horizontal plane. A vector diagram for these forces is shown to scale in Fig. 1.1.

Fig. 1.1

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

A force of 7.5 N towards north and a force of 2.5 N from 30° north of east act on	В.
The mass of B is 750 g.	

(i)		Fig. 1.1, draw an arrow to show the approximate direction of the resultant of the forces.	ese [1]
(ii)	1.	Show that the magnitude of the resultant force on B is 6.6 N.	

2. Calculate the magnitude of the acceleration of B produced by this resultant force.

magnitude =
$$m s^{-2}$$
 [2]

[1]

(iii) Determine the angle between the direction of the acceleration and the direction of the 7.5 N force.