An Introduction to the Chemistry of the Transition Elements #### **Question Paper 5** | Level | International A Level | |------------|--| | Subject | Chemistry | | Exam Board | CIE | | Topic | An Introduction to the Chemistry of the Transition
Elements | | Sub-Topic | | | Paper Type | Theory | | Booklet | Question Paper 5 | Time Allowed: 80 minutes Score: /66 Percentage: /100 #### **Grade Boundaries:** | A* | А | В | С | D | E | U | |------|--------|-----|-------|-------|-----|------| | >85% | 777.5% | 70% | 62.5% | 57.5% | 45% | <45% | | 1 (a) | (i) | What is mean | t by the term <i>ligan</i> d | d in the context of trai | nsition element chemistry? | |-------|------|---|--|--|---| | | | | | | | | | | | | | | | | (ii) | | of the following sp | | and, and which could not be. | | | | species | can be a ligand | cannot be a ligand | | | | | OH ⁻ | | | | | | | NH ₄ ⁺ | | | | | | | CH ₃ OH | | | | | | | CH ₃ NH ₂ | | | | | | | | | | [3] | | | que | When 0.1 mol a deep blue so When 0.2 mol allowed to eva Heating this re When water is formed. Neither Adding BaC l_2 Solid D dissol blue solution of | of white anhydrous of white anhydrous of solid NaOH is apporate, a solid respective to 200°C produced to this mixtor D nor E contains (aq) to solution E postering to the produced to the produced to the produced to the produced to solution E produced to the produ | s CuSO ₄ is dissolved added to solution of the th | volution of gas, to give a pale | | | (i) | solution C solid Dsolution E | | | ich of the following. | | | (ii) | | | occurring when D re | acts with HNO ₃ (aq).
[5] | | (c) | (i) | Describe what you would observe when a solid sample of anhydrous $\mathrm{Cu}(\mathrm{NO_3})_2$ is strongly heated. | |-----|------|---| | | (ii) | Write an equation for this reaction. | | | | [2] | | | | [Total: 10] | | 2 | (a) | Explain why complexes of transition elements are often coloured. | |---|-----|--| | | | | | | | | | | | [3] | | | (b) | When water is added to white anhydrous $CuSO_4$, the solid dissolves to give a blue solution. The solution changes to a yellow-green colour when concentrated $NH_4Cl(aq)$ is added to it. Concentrating the solution produces green crystals of an ammonium salt with the empirical formula $CuN_2H_8Cl_4$. Explain these observations, showing your reasoning. | | | | | | | | | | | | | | | (c) | Copper can be recovered from low-grade ores by 'leaching' the ore with dilute H_2SO_4 , which converts the copper compounds in the ore into $CuSO_4(aq)$. The concentration of copper in the leach solution can be estimated by adding an excess of aqueous potassium iodide, and titrating the iodine produced with standard $Na_2S_2O_3(aq)$. | | | | $2Cu^{2+} + 4I^{-} \rightarrow 2CuI + I_{2}$
$I_{2} + 2S_{2}O_{3}^{2-} \rightarrow 2I^{-} + S_{4}O_{6}^{2-}$ | | | | When an excess of KI(aq) was added to a $50.0\mathrm{cm^3}$ sample of leach solution, and the resulting mixture titrated, $19.5\mathrm{cm^3}$ of $0.0200\mathrm{moldm^{-3}}$ $\mathrm{Na_2S_2O_3}(\mathrm{aq})$ were required to discharge the iodine colour. Calculate the [Cu ²⁺ (aq)], and hence the percentage by mass of copper, in the leach | | | | solution. | | | | | | | | | | | | | percentage of copper =% [3] | 3 | (a) | Explain what is meant by the term transition element. | | | | | | | |---|-----|---|----|--|--|--|--|--| | | | [| | | | | | | | | (b) | Complete the electronic configuration of | | | | | | | | | | (i) the vanadium atom, $1s^22s^22p^6$ | | | | | | | | | | (ii) the Cu^{2+} ion. $1s^2 2s^2 2p^6$ | | | | | | | | | (c) | List the four most likely oxidation states of vanadium. | | | | | | | | | | [| 1] | | | | | | | | (d) | Describe what you would see, and explain what happens, when dilute aqueous ammonis added to a solution containing Cu ²⁺ ions, until the ammonia is in an excess. | а | [t | 5] | | | | | | | | (e) | Copper powder dissolves in an acidified solution of sodium vanadate(V), $NaVO_3$, to produce a blue solution containing VO^{2+} and Cu^{2+} ions. By using suitable half-equations from the <i>Data Booklet</i> , construct a balanced equation for this reaction. | [2 | 2] | | | | | | [Total: 11] Metals play a vital part in biochemical systems. In this question you need to consider why | son | ne m | etals are | e essential to life, whilst others are toxic. | | | |------|--|----------------------|--|--|--| | (a) | | each of
mical ro | f the metals, state where it might be found in a living organism, and what its ble is. | | | | iron | | | location in organism | | | | | | | role | | | | | | | | | | | | sod | ium | location in organism | | | | | | | role | | | | | | | | | | | | zinc | ; | location in organism | | | | | | | role | | | | | | | | | | | | | | [6] | | | | (b) | | avy meta
d chain. | als such as mercury are toxic, and it is important that these do not enter the | | | | | (i) Give a possible source of mercury in the environment. | | | | | | | | | | | | | | (ii) Describe and explain two reasons why mercury is toxic, using diagrams and/or e to help your explanation. | [4] | | | | | | | [Total : 10] | | | #### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ 5 One major difference between the properties of compounds of the transition elements and those of other compounds is that the compounds of the transition elements are often coloured. | | | | | | _ | | _ | | _ | | |-----|------------|------------|------|------------|---------|------|--------|-----|----------|---| | (a) | Explain in | detail why | many | transition | element | comi | nounds | are | coloured | d | | | | | | | | | | | | | | [3] | |-----| (b) The following graph shows the absorption spectrum of two complexes containing copper. (i) State the colours of the following complex ions. | [Cu(H ₂ O) ₆] ²⁺ | | |--|--| | $[Cu(NH_3)_4(H_2O)_2]^{2+}$ | | (ii) Using the spectra above give **two** reasons why the colour of the $[Cu(NH_3)_4(H_2O)_2]^{2+}$ ion is deeper (more intense) than that of the $[Cu(H_2O)_6]^{2+}$ ion. |
 | | | |------|------|--| | | | | | | | | |
 |
 | | | | | | (iii) Predict the absorption spectrum of the complex $[Cu(NH_3)_2(H_2O)_4]^{2+}$, and sketch this spectrum on the above graph. [6] | (c) Copper forms a complex with chlorine according to the following equilibrium. | | | | | | |--|------|---|---------|--|--| | | | $Cu^{2+}(aq) + 4Cl^{-}(aq) \rightleftharpoons [CuCl_4]^{2-}(aq)$ | | | | | | (i) | Write an expression for the equilibrium constant, K_c , for this reaction, stating units. | its | | | | | | $K_c =$ units | | | | | | (ii) | The numerical value of K_c is 4.2×10^5 . Calculate the [[CuC l_4] ²⁻]/[Cu ²⁺] ratio when [C l^-] = 0.20 mol dm ⁻³ . | | | | | | | | | | | | | | |
[3] | | | | | | [Total: 1 | 2] | | | Iron metal and its compounds are useful catalysts in certain reactions. 6 | (a) | | n its catalytic it is a transition | | e two propert | ties of iron o | or its compou | ınds | | |-------|--|--|-------------------------------|--|-----------------------------|---|------|--| (b) | Outline ho | ovided with a so
w you could us
ou should includ | se this solution | n to find out t | he concentr | ation of Fe ²⁺ | (c) | For each of the following equations, write the oxidation number of the element pr in bold underneath its symbol, and balance the equation by adding appropriate numbefore each species. | | | | | | | | | | (i) | MnO ₄ + | S O ₂ + | H ₂ O → | Mn ²⁺ + . | S O ₄ ²⁻ + . | | | | ation | numbers: | | | | | | | | | 20101 | | _ | | | | | | | | | (ii) | Cr ₂ O ₇ ²⁻ + | · N O ₂ + . | \dots H ⁺ \rightarrow \dots | Cr ³⁺ + | N O ₃ + | I | | | (a) | peroxydisulfate(VI) ions. | |-----|---| | | $2I^- + S_2O_8^{2-} \longrightarrow I_2 + 2SO_4^{2-}$ | | | | | | [2] | | | | | | [Total: 14] |