An Introduction to the Chemistry of the Transition Elements

Question Paper 5

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	An Introduction to the Chemistry of the Transition Elements
Sub-Topic	
Paper Type	Theory
Booklet	Question Paper 5

Time Allowed: 80 minutes

Score: /66

Percentage: /100

Grade Boundaries:

A*	А	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1 (a)	(i)	What is mean	t by the term <i>ligan</i> d	d in the context of trai	nsition element chemistry?
	(ii)		of the following sp		and, and which could not be.
		species	can be a ligand	cannot be a ligand	
		OH ⁻			
		NH ₄ ⁺			
		CH ₃ OH			
		CH ₃ NH ₂			
					[3]
	que	When 0.1 mol a deep blue so When 0.2 mol allowed to eva Heating this re When water is formed. Neither Adding BaC l_2 Solid D dissol blue solution of	of white anhydrous of white anhydrous of solid NaOH is apporate, a solid respective to 200°C produced to this mixtor D nor E contains (aq) to solution E postering to the produced to the produced to the produced to the produced to solution E produced to the produ	s CuSO ₄ is dissolved added to solution of the solution of th	volution of gas, to give a pale
	(i)	solution C solid Dsolution E			ich of the following.
	(ii)			occurring when D re	acts with HNO ₃ (aq). [5]

(c)	(i)	Describe what you would observe when a solid sample of anhydrous $\mathrm{Cu}(\mathrm{NO_3})_2$ is strongly heated.
	(ii)	Write an equation for this reaction.
		[2]
		[Total: 10]

2	(a)	Explain why complexes of transition elements are often coloured.
		[3]
	(b)	When water is added to white anhydrous $CuSO_4$, the solid dissolves to give a blue solution. The solution changes to a yellow-green colour when concentrated $NH_4Cl(aq)$ is added to it. Concentrating the solution produces green crystals of an ammonium salt with the empirical formula $CuN_2H_8Cl_4$. Explain these observations, showing your reasoning.
	(c)	Copper can be recovered from low-grade ores by 'leaching' the ore with dilute H_2SO_4 , which converts the copper compounds in the ore into $CuSO_4(aq)$. The concentration of copper in the leach solution can be estimated by adding an excess of aqueous potassium iodide, and titrating the iodine produced with standard $Na_2S_2O_3(aq)$.
		$2Cu^{2+} + 4I^{-} \rightarrow 2CuI + I_{2}$ $I_{2} + 2S_{2}O_{3}^{2-} \rightarrow 2I^{-} + S_{4}O_{6}^{2-}$
		When an excess of KI(aq) was added to a $50.0\mathrm{cm^3}$ sample of leach solution, and the resulting mixture titrated, $19.5\mathrm{cm^3}$ of $0.0200\mathrm{moldm^{-3}}$ $\mathrm{Na_2S_2O_3}(\mathrm{aq})$ were required to discharge the iodine colour. Calculate the [Cu ²⁺ (aq)], and hence the percentage by mass of copper, in the leach
		solution.

percentage of copper =% [3]

3	(a)	Explain what is meant by the term transition element.						
		[
	(b)	Complete the electronic configuration of						
		(i) the vanadium atom, $1s^22s^22p^6$						
		(ii) the Cu^{2+} ion. $1s^2 2s^2 2p^6$						
	(c)	List the four most likely oxidation states of vanadium.						
		[1]					
	(d)	Describe what you would see, and explain what happens, when dilute aqueous ammonis added to a solution containing Cu ²⁺ ions, until the ammonia is in an excess.	а					
		[t	5]					
	(e)	Copper powder dissolves in an acidified solution of sodium vanadate(V), $NaVO_3$, to produce a blue solution containing VO^{2+} and Cu^{2+} ions. By using suitable half-equations from the <i>Data Booklet</i> , construct a balanced equation for this reaction.						
		[2	2]					

[Total: 11]

Metals play a vital part in biochemical systems. In this question you need to consider why

son	ne m	etals are	e essential to life, whilst others are toxic.		
(a)		each of mical ro	f the metals, state where it might be found in a living organism, and what its ble is.		
iron			location in organism		
			role		
	sod	ium	location in organism		
			role		
	zinc	;	location in organism		
			role		
			[6]		
(b)		avy meta d chain.	als such as mercury are toxic, and it is important that these do not enter the		
	(i) Give a possible source of mercury in the environment.				
	(ii) Describe and explain two reasons why mercury is toxic, using diagrams and/or e to help your explanation.				
			[4]		
			[Total : 10]		

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

5 One major difference between the properties of compounds of the transition elements and those of other compounds is that the compounds of the transition elements are often coloured.

					_		_		_	
(a)	Explain in	detail why	many	transition	element	comi	nounds	are	coloured	d

[3]

(b) The following graph shows the absorption spectrum of two complexes containing copper.

(i) State the colours of the following complex ions.

[Cu(H ₂ O) ₆] ²⁺	
$[Cu(NH_3)_4(H_2O)_2]^{2+}$	

(ii) Using the spectra above give **two** reasons why the colour of the $[Cu(NH_3)_4(H_2O)_2]^{2+}$ ion is deeper (more intense) than that of the $[Cu(H_2O)_6]^{2+}$ ion.

(iii) Predict the absorption spectrum of the complex $[Cu(NH_3)_2(H_2O)_4]^{2+}$, and sketch this spectrum on the above graph. [6]

(c) Copper forms a complex with chlorine according to the following equilibrium.					
		$Cu^{2+}(aq) + 4Cl^{-}(aq) \rightleftharpoons [CuCl_4]^{2-}(aq)$			
	(i)	Write an expression for the equilibrium constant, K_c , for this reaction, stating units.	its		
		$K_c =$ units			
	(ii)	The numerical value of K_c is 4.2×10^5 . Calculate the [[CuC l_4] ²⁻]/[Cu ²⁺] ratio when [C l^-] = 0.20 mol dm ⁻³ .			
			 [3]		
		[Total: 1	2]		

Iron metal and its compounds are useful catalysts in certain reactions.

6

(a)		n its catalytic it is a transition		e two propert	ties of iron o	or its compou	ınds	
(b)	Outline ho	ovided with a so w you could us ou should includ	se this solution	n to find out t	he concentr	ation of Fe ²⁺		
(c)	For each of the following equations, write the oxidation number of the element pr in bold underneath its symbol, and balance the equation by adding appropriate numbefore each species.							
	(i)	MnO ₄ +	S O ₂ +	H ₂ O →	Mn ²⁺ + .	S O ₄ ²⁻ + .		
ation	numbers:							
20101		_						
	(ii)	Cr ₂ O ₇ ²⁻ +	· N O ₂ + .	\dots H ⁺ \rightarrow \dots	Cr ³⁺ +	N O ₃ +	I	

(a)	peroxydisulfate(VI) ions.
	$2I^- + S_2O_8^{2-} \longrightarrow I_2 + 2SO_4^{2-}$
	[2]
	[Total: 14]