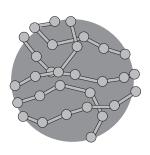
An Introduction to the Chemistry of the Transition Elements

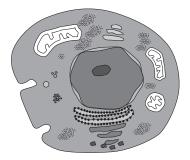
Question Paper 6

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	An Introduction to the Chemistry of the Transition Elements
Sub-Topic	
Paper Type	Theory
Booklet	Question Paper 6

Time Allowed: 75 minutes

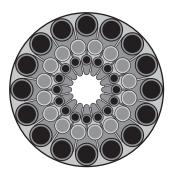
Score: /62

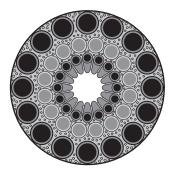

Percentage: /100


Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1 (a) Put the following items in order of **increasing** size. Use the number 1 to indicate the smallest and 3 to indicate the largest.




length of DNA molecule in a chromosome	nanosphere diameter	cell diameter

[2]

(b) Nanotechnology has an increasing range of uses across a number of fields including sport. For example, golf clubs are now being made using nanomaterials.

cross-section of normal golf club shaft

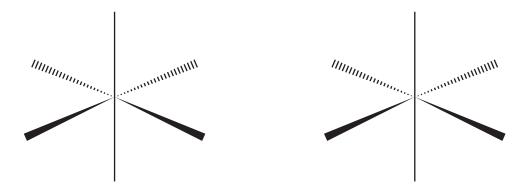
cross-section of golf club shaft with nanomaterial fill

Use the diagrams above and your knowledge of nanomaterials to suggest **two** properties of the new shafts. Explain your answers.

(i)	
(ii)	

[2]

(c)	to th	nixture of nano-sized particles of tungsten and vanadium(IV) oxide can be applied ne surface of windows and reflects heat whilst letting all light in the visible range ugh.
	Sug	gest how this variable reflective property is possible using nano-sized particles.
		[2]
(d)	use	ough silver is well-known as a precious metal, its medicinal properties have been d for hundreds of years. In ancient Greece silver was used to purify water and until development of antibiotics, silver was important in the treatment of large wounds.
	(i)	What property of silver makes it useful for jewellery?
	(ii)	Suggest the property of silver that makes it useful in the treatment of large wounds.
	(iii)	Suggest why nano-sized silver particles are more useful in treating wounds.
		[3]
		[Total: 9]


Save My Exams! - The Home of Revision

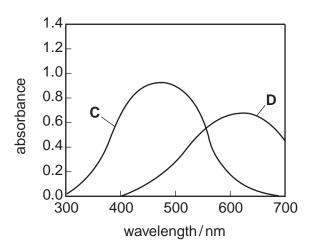
For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2 The following passage is taken from an A level Chemistry text book.

"In an isolated atom, the five d-orbitals have the same energy. In an octahedral complex ion, however, the presence of the ligands splits the five orbitals into a group of three and a group of two. These two groups have slightly different energies."

(a) Use the following sets of axes to draw the shape of **one** d-orbital in **each** of the two groups mentioned above.

(b) Explain how the presence of the six ligands, L, in $[FeL_6]^{3+}$ splits the 3d orbitals into two groups of different energy, and explain whether the two-orbital group or the three-orbital group has the higher energy.


[2]

[3]

(c) The following table lists the colours and energies of photons of light of certain wavelengths.

wavelength /nm	energy of photon	colour of photon
400	high	violet
450	↓	blue
500	lower	green
600	\	yellow
650	low	red

The visible spectra of solutions of two transition metal complexes ${\bf C}$ and ${\bf D}$ are shown in the diagram below.

(i) A list of possible colours for these complexes is as follows.

		yellow	red	green	blue	
	Choose o	ne of these wo	rds to describ	oe the observe	ed colour of each solution.	
	solution C			. solution D		
(ii)		omplex, C or D ? Explain your		rgy gap betwee	en the two groups of orbitals be	Э
						•
					[3	[3]

[Total: 8]

3	(a)	A tra	ansition element X has the electronic configuration [Ar] $4s^2$ $3d^3$.
		(i)	Predict its likely oxidation states.
		(ii)	State the electronic configuration of the ion \mathbf{X}^{3+} .
			[2]
	(b)	Pota	assium manganate(VII), KMnO ₄ , is a useful oxidising agent in titrimetric analysis.
		(i)	Describe how you could use a $0.0200\mathrm{moldm^{-3}}$ solution of $\mathrm{KMnO_4}$ to determine accurately the [Fe ²⁺] in a solution. Include in your description how you would recognise the end-point in the titration, and write an equation for the titration reaction.
		(ii)	A 2.00 g sample of iron ore was dissolved in dilute $\rm H_2SO_4$ and all the iron in the salts produced was reduced to $\rm Fe^{2+}(aq)$. The solution was made up to a total volume of 100 cm ³ .
			A 25.0 cm 3 portion of the solution required 14.0 cm 3 of 0.0200 mol dm $^{-3}$ KMnO $_4$ to reach the end-point.
			Calculate the percentage of iron in the ore.
			[8]

(c) High-strength low-alloy (HSLA) steels are used to fabricate TV masts and long span

cop	ges. They contain very low amounts of phosphorus and sulphur, but about 1% per, to improve resistance to atmospheric corrosion. When dissolved in nitric acid, a pple of this steel gives a pale blue solution.
(i)	What species is responsible for the pale blue colour?
(ii)	Describe and explain what you would see when dilute aqueous ammonia is added to this solution.
	[4]

[Total: 14]

4 ((a)	(i) State the electronic configuration of the iron atom.	
		(ii)	Apart from its electronic structure, state two properties of iron or its compounds that are characteristic of a transition element.
	(h)	Δciα	[3] dified solutions of iron(II) salts can be titrated using a dilute solution of potassium
	(6)		nganate(VII), KMnO ₄ .
		(i)	Use the <i>Data Booklet</i> to calculate the standard cell potential and to write a balanced ionic equation for the reaction that takes place during the titration.
		(ii)	Explain why no indicator is required for this titration. What colour change would you see at the end point?
			[4]
	(c)		e the reaction between Fe ³⁺ ions and water molecules to explain the meanings of terms <i>ligand</i> and <i>complex formation</i> .
			[2]

(d)	An i	mportant biological molecule containing iron is haemoglobin.	
	(i)	What is the role of haemoglobin in the body?	
	(ii)	Use your answer to (i) to explain why carbon monoxide is poisonous.	••
		[2	 2]
(e)	read	a possible industrial synthesis of ethanol, the complex Fe(CO) ₅ catalyses the ction between carbon monoxide, hydrogen and methanol according to the followin ation.	
		$CH_3OH + 2CO + H_2 \xrightarrow{200 ^{\circ}C} CH_3CH_2OH + CO_2$	
		scribe a test (reagents and observations) that would distinguish ethanol from hanol.	n
	reaç	gents	
	obs	ervation with methanol	
	obs	ervation with ethanol[2	2]
		[Total: 13	3]

5	(a)	Explain what is meant by the term transition element.		
			[1]	
	(b)	(i)	How do the atomic radii of the transition elements vary from chromium to copper?	
		(ii)	Predict, with a reason, the variation in the densities of the transition elements from chromium to copper.	
			[3]	
	(c)	Cor	nplete the following electronic configuration of the Cu ²⁺ ion.	
			$1s^22s^22p^63s^23p^6$	
	(d)	Copper ions in aqueous solution are pale blue, due to the formation of a complex ion.		
		(i)	Explain what is meant by the term complex ion.	
		(ii)	Draw the structure of the complex ion formed in a solution of Cu ²⁺ (aq).	

(e)	When dilute aqueous ammonia is added to a solution of Cu ²⁺ (aq), the colour changes as a new complex ion is formed.					
	(i)	State the colour of the new complex				
	(ii)	Write an equation showing the formation of the new complex.				
		[2]				
(f)		en concentrated hydrochloric acid is added to a solution of $Cu^{2+}(aq)$, the colour nges to yellow-green. On adding water, the colour returns to pale blue.				
	Sug	gest an explanation for these changes.				
		[3]				
		[Total: 12]				

6	(a)	Titanium is an important transition metal. The metal itself is a component of many high- strength low-weight alloys, and its oxide is used as an opaque agent in many paints and pigments.				
		(i)	Write out the electronic configuration of the titanium atom.			
		(ii)	Titanium forms two chlorides. Suggest possible formulae for them.			
			[2]			
	(b)	Anhydrous copper sulphate, CuSO ₄ (s), is a white powder that readily dissolves in water				
		(i)	Describe and explain what is seen when CuSO ₄ (s) is stirred with water.			
		(ii)	Describe and explain the final colour change seen when an excess of $\mathrm{NH_3(aq)}$ is added to $\mathrm{CuSO_4(aq)}.$			
			[4]			
			[Total : 61			

[Total : 6]