An Introduction to the Chemistry of the Transition Elements

Question Paper 7

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Торіс	An Introduction to the Chemistry of the Transition Elements
Sub-Topic	
Paper Type	Theory
Booklet	Question Paper 7

Time Allo	wed:	32 minu	ites						
Score:		/26							
Percentag	e:	/100							
Grade Bou	indaries:								
A*	А	В	С	D	E	U			
>85%	777.5%	70%	62.5%	57.5%	45%	<45%			

1 This question refers to the elements in the section of the Periodic Table shown below.

		Н						He	
Li	Be	2	В	С	Ν	0	F	Ne	
Na	Mg	9	Al	Si	Ρ	S	Cl	Ar	
K	Ca	a transition elements	Ge	As	Se	Br	Kr		
(a)	Fro des	m this list of elements, identify in each case cribed. Give the symbol of the element.	one	elem	ent th	at ha	s the	proper	ty
	(i)	An element that has molecules which consist	of sin	gle ato	oms.				
	(ii)	An element that has a molecule which contain	is exa	ictly fo	our ato	oms.			
	(iii)	The element that is a liquid at room temperatu	ire an	d pres	ssure.				
	(iv)	The element in Period 3 (Na to Ar) that has the	e larg	est at	omic r	adius.			
	(v)	The element in Period 3 (Na to Ar) that has the	e high	nest m	elting	point.			
	(vi)	The element in Period 3 (Na to Ar) that forms	the la	rgest	anion.				
	(vii)	An element that reacts with water to give a sol agent.	lution	that c	an be	have a	as an	oxidisin	ıg

[7]

(b) The formulae and melting points of some of the oxides of the elements in Period 3, Na to *Cl*, are given in the table.

formula of oxide	Na ₂ O	MgO	Al_2O_3	SiO ₂	P_4O_6	SO ₂	Cl_2O_7
m.p./°C	1132	2830	2054	1710	24	-73	-92

(i) Give the formulae of two of these oxides that have simple molecular structures.

..... and

(ii) Give the formula of one of these oxides that will give no reaction with water when placed in it for a long time.

.....

(iii) Give the formula of the product formed when MgO is reacted with SO₂.

.....

[4]

(c) The melting points of the elements Si to Cl are given in the table.

element	Si	Р	S	Cl
m.p./°C	1414	44	115	-102

(i) Explain why the melting point of Si is very much greater than those of the other three elements.

.....

-
- (ii) Suggest why the melting points of the other three elements are in the order S > P > Cl.

[4]

[Total: 15]

- 2 (a) (i) What is meant by the term *ligand* as applied to the chemistry of the transition elements?
 -
 - (ii) Describe the type of bonding that occurs between a ligand and a transition element.

[2]

(b) Chromium hexacarbonyl undergoes the following ligand replacement reaction.

 $Cr(CO)_6 + PR_3 \rightarrow Cr(CO)_5 PR_3 + CO$

Two separate experiments were carried out to study the rate of this reaction. In the first experiment, the ligand PR_3 was in a large excess and $[Cr(CO)_6]$ was measured with time. The results are shown on the graph below.

In the second experiment, $Cr(CO)_6$ was in a large excess, and $[PR_3]$ was measured with time. The following results were obtained.

time/s	$[PR_3]/moldm^{-3}$
0	0.0100
120	0.0076
200	0.0060
360	0.0028

(i) Plot the data in the table on the graph above, using the same axis scales, and draw

(ii) Use the graphs to determine the order of reaction with respect to $Cr(CO)_6$ and PR_3 . In each case explain how you arrived at your answer.

 $Cr(CO)_{6}$ PR₃ Write the rate equation for the reaction, and calculate a value for the rate constant, (iii) using the method of initial rates, or any other method you prefer. (iv) State the units of the rate constant. Four possible mechanisms for this reaction are given below. Draw a circle around (v) the letter next to the one mechanism which is consistent with the rate equation you have written in (iii). $Cr(CO)_6 \rightarrow Cr(CO)_5 + CO$ $Cr(CO)_5 + PR_3 \rightarrow Cr(CO)_5PR_3$ Α fast slow $\begin{array}{c} \operatorname{Cr(CO)}_6 \xrightarrow{} \operatorname{Cr(CO)}_5 + \operatorname{CO} \\ \operatorname{Cr(CO)}_5 + \operatorname{PR}_3 \xrightarrow{} \operatorname{Cr(CO)}_5 \operatorname{PR}_3 \end{array}$ В slow fast $\mathrm{Cr(CO)}_{6} + \mathrm{PR}_{3} \rightarrow [\mathrm{OC}\text{---}\mathrm{Cr(CO)}_{4}\text{---}\mathrm{PR}_{3}] \rightarrow \mathrm{Cr(CO)}_{5}\mathrm{PR}_{3} + \mathrm{CO}$ С (transition state) $Cr(CO)_6 + PR_3 \rightarrow Cr(CO)_6 PR_3$ $Cr(CO)_6 PR_3 \rightarrow Cr(CO)_5 PR_3 + CO$ D slow fast Explain your answer. [9]

[Total: 11]