Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Ultrasound

Question paper 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Waves
Sub Topic	Ultrasound
Paper Type	Theory
Booklet	Question paper 1

Time Allowed: 53 minutes

Score: /44

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a)	State what is meant b	by the specific acou	stic impedance o	f a medium.
					[2]
	(b)	The specific acoustic	c impedances Z of s	ome media are g	iven in Fig. 10.1.
				$Z/\text{kg m}^{-2}\text{s}^{-1}$	
			air	4.3×10^2	
			gel	1.5×10^6	
			soft tissue	1.6×10^6	
			bone	7.0×10^6	
			Fiç	j. 10.1	
		(i) The density of a	sample of bone is	1.7×10 ³ kg m ⁻³ .	
		Determine the v	vavelength, in mm, o	of ultrasound of fr	requency 9.0×10 ⁵ Hz in the bone.
					,
			w	avelength =	mm [3]
			••	g	[0]

(ii) Ultrasound of intensity / is incident normally on the boundary between two media of specific acoustic impedances Z_1 and Z_2 , as shown in Fig. 10.2.

Fig. 10.2

The intensity of the ultrasound reflected from the boundary is I_R .

The ratio $\frac{I_{\rm R}}{I}$ is given by the expression $\frac{I_{\rm R}}{I} = \frac{(Z_1 - Z_2)^2}{(Z_1 + Z_2)^2}.$

$$\frac{I_{R}}{I} = \frac{(Z_{1} - Z_{2})^{2}}{(Z_{1} + Z_{2})^{2}}.$$

By making reference to the data for air, gel and soft tissue, explain quantitatively why, during medical diagnosis using ultrasound, a gel is usually put on the skin.

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2	(a)	By reference to ultrasound waves, state what is meant by the <i>specific acoustic impedance</i> or a medium.

(b) A parallel beam of ultrasound of intensity *I* is incident normally on a muscle of thickness 3.4 cm, as shown in Fig. 11.1.

Fig. 11.1

The ultrasound wave is reflected at a muscle-bone boundary. The intensity of the ultrasound received back at the transducer is I_R .

Some data for bone and muscle are given in Fig. 11.2.

	specific acoustic impedance /kg m ⁻² s ⁻¹	linear absorption coefficient /m ⁻¹
bone	6.4×10 ⁶	130
muscle	1.7×10 ⁶	23

Fig. 11.2

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(i)	The intensity reflection coefficient α for two media having specific acoustic impedances Z_1 and Z_2 is given by
	$\alpha = \frac{(Z_1 - Z_2)^2}{(Z_1 + Z_2)^2}.$
	Calculate the fraction of the ultrasound intensity that is reflected at the muscle-bone boundary.
	fraction =[2]
(ii)	Calculate the fraction of the ultrasound intensity that is transmitted through a thickness of 3.4 cm of muscle.
	fraction —

ratio =[2]

(iii) Use your answers in (i) and (ii) to determine the ratio $\frac{I_R}{I}$.

3	(a)	Explain the main principles behind the use of ultrasound to obtain diagnostic information about internal body structures.
		[6]
	(b)	State and explain one advantage of the use of high frequency ultrasound as compared with low frequency ultrasound for medical diagnosis.
		[2]
	(c)	The absorption (attenuation) coefficient for ultrasound in muscle is 23 m ⁻¹ . A parallel beam of ultrasound is passed through a muscle of thickness 6.4 cm.
		(i) Calculate the ratio
		into poit, of tropomitted boom

intensity of transmitted beam intensity of incident beam.

ti	•	· ^ 1	1
ratio =		<u>o</u>	ı

(ii)	An ultrasound transmitter emits a pulse. Suggest why, when the signal from the pulse is processed, any signal received later at the detector is usually amplified more than that received at an earlier time.
	[2]

4	(a)	By reference to ultrasound waves, state what is meant by acoustic impedance.	
		[2]
	(b)	An ultrasound wave is incident on the boundary between two media. The acoustic impedances of the two media are Z_1 and Z_2 , as illustrated in Fig. 10.1.)
		boundary	
		$\begin{array}{c c} \hline \\ \text{incident} \\ \hline \\ \text{wave} \\ \hline \end{array}$	
		Fig. 10.1 Explain the importance of the difference between Z_1 and Z_2 for the transmission of ultrasound across the boundary.	f
		[3	J
	(c)	Ultrasound frequencies as high as 10 MHz are used in medical diagnosis. State and explain one advantage of the use of high-frequency ultrasound compared with lower-frequency ultrasound.	k
		[2]

Explain the principles of the generation and detection of ultrasound waves.
[6