Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Ultrasound

Question paper 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Waves
Sub Topic	Ultrasound
Paper Type	Theory
Booklet	Question paper 2

Time Allowed: 51 minutes

Score: /42

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a)	State what is meant by the <i>acoustic impedance Z</i> of a medium.
		[1
	(b)	Two media have acoustic impedances Z_1 and Z_2 . The intensity reflection coefficient α for the boundary between the two media is given by
		$\alpha = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}.$

Describe the effect on the transmission of ultrasound through a boundary where there is a large difference between the acoustic impedances of the two media.

.....

(c) Data for the acoustic impedance Z and the absorption coefficient μ for fat and for muscle are shown in Fig. 10.1.

	$Z/{\rm kg}{\rm m}^{-2}{\rm s}^{-1}$	μ /m ⁻¹
fat muscle	1.3×10^6 1.7×10^6	48 23

Fig. 10.1

The thickness x of the layer of fat on an animal, as illustrated in Fig. 10.2, is to be investigated using ultrasound.

Fig. 10.2

The The	beam is reflected from the bounda	beam entering the surface S of the layer of fat is <i>I</i> . ry between fat and muscle. d detected at the surface S of the fat is 0.012 <i>I</i> .
(i)	the intensity reflection coefficient a	at the boundary between the fat and the muscle,
(ii)	the thickness <i>x</i> of the layer of fat.	coefficient =[2]
		x = cm [3]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2 (a) (i) State what is meant by the acoustic impedance of a medium.

(ii) Data for some media are given in Fig. 10.1.

medium	speed of ultrasound / ms ⁻¹	acoustic impedance / kg m ⁻² s ⁻¹
air gel soft tissue bone	330 1500 1600 4100	4.3×10^{2} 1.5×10^{6} 1.6×10^{6} 7.0×10^{6}

Fig. 10.1

Use data from Fig. 10.1 to calculate a value for the density of bone.

density =
$$kg m^{-3}$$
 [1]

(b) A parallel beam of ultrasound has intensity *I*. It is incident at right-angles to a boundary between two media, as shown in Fig. 10.2.

Fig. 10.2

The media have acoustic impedances of Z_1 and Z_2 . The transmitted intensity of the ultrasound beam is I_T and the reflected intensity is I_R .

(i) State the relation between I, $I_{\rm T}$ and $I_{\rm R}$.

.....[1]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(ii)	The reflection coefficient α is given by the expression

$$\alpha = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}.$$

Use data from Fig. 10.1 to determine the reflection coefficient $\boldsymbol{\alpha}$ for a boundary between

1.	ael	and	soft	tissue,
	you	ana	JUIL	แงงนะ,

$$\alpha$$
 =[2]

2. air and soft tissue.

$$\alpha$$
 =[1]

(c) By reference to your answers in (b)(ii), explain the use of a gel on the surface of skin during ultrasound diagnosis.

3	Explain the information	about ir	nternal bo	ody struc	tures.					
			•••••							
			•••••				 	 		•
		•••••	•••••			•••••	 	 		
									16	٦ī

Explain the main principles behind the use of ultrasound to obtain diagnostic information about internal body structures.
•

(b) Data for the acoustic impedances and absorption (attenuation) coefficients of muscle and bone are given in Fig. 11.1.

	acoustic impedance / kg m ⁻² s ⁻¹	absorption coefficient / m ⁻¹
muscle	1.7 × 10 ⁶	23
bone	6.3 × 10 ⁶	130

Fig. 11.1

The intensity reflection coefficient is given by the expression

$$\frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}.$$

The attenuation of ultrasound in muscle follows a similar relation to the attenuation of X-rays in matter.

A parallel beam of ultrasound of intensity *I* enters the surface of a layer of muscle of thickness 4.1 cm as shown in Fig. 11.2.

Fig. 11.2

The ultrasound is reflected at a muscle-bone boundary and returns to the surface of the

mus	scle.
Cal	culate
(i)	the intensity reflection coefficient at the muscle-bone boundary,
	coefficient =[2
(ii)	the fraction of the incident intensity that is transmitted from the surface of the muscle to the surface of the bone,
	fraction =[2
iii)	the intensity, in terms of <i>I</i> , that is received back at the surface of the muscle.
	intensity = / [2

5	(a)	State what is meant by acoustic impedance.
		[1]
	(b)	Explain why acoustic impedance is important when considering reflection of ultrasound at the boundary between two media.
		[2]
	(c)	Explain the principles behind the use of ultrasound to obtain diagnostic information about structures within the body.
		[5]