Nitrogen & Sulfur Question Paper 4

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Торіс	Nitrogen & Sulfur
Sub-Topic	
Paper Type	Theory
Booklet	Question Paper 4

Time Allowed:		20 minu	20 minutes					
Score:		/16						
Percentage	::	/100	/100					
Grade Boundaries:								
A*	А	В	С	D	E	U		
>85%	777.5%	70%	62.5%	57.5%	45%	<45%		

1 Ammonia, NH₃, is a colourless, pungent-smelling gas which has been known to man from the beginning of recorded time. It is given off from urine such as that on a wet nappy from a baby.

The nitrogen-containing substance in urine is urea, $CO(NH_2)_2$, and this decomposes by hydrolysis into ammonia and another colourless gas.

(a) Construct an equation for the hydrolysis of aqueous urea.

.....[2]

Ammonia was named after the shrine of Jupiter Ammon which was near the Egyptian-Libyan border. In ancient times ammonia was obtained by distilling camel dung.

- (b) Now ammonia is synthesised from its elements in the Haber Process.
 - (i) Write an equation for this process.

.....

(ii) State the three usual operating conditions of the Haber Process.

.....

(iii) State **two** modern commercial uses of ammonia.

.....

-[4]
- (c) 1.20 dm³ of ammonia gas were dissolved in water to form 200 cm³ of aqueous alkali at room temperature and pressure.
 - (i) Use the Data Booklet to calculate how many moles of $NH_3(g)$ were dissolved.

(ii) Write the equation for the neutralisation of aqueous ammonia by dilute sulphuric acid.

.....

(iii) Calculate the volume of 0.50 mol dm⁻³ sulphuric acid that is required to neutralise the 200 cm³ of aqueous ammonia.

(d) In the boxes below, draw diagrams to show the shapes of an ammonia molecule and an ammonium ion. Clearly show the bond angles on your diagrams.

[4]

- (e) Ammonia does not burn in air but will burn in pure oxygen.
 - (i) Balance the equation for this reaction:

$$\dots \mathbb{N}H_3(g) + \dots \mathbb{O}_2(g) \longrightarrow \dots \mathbb{N}_2(g) + \dots \mathbb{H}_2O(g)$$

(ii) Use oxidation numbers to explain why this is a redox reaction.

[3]

[Total : 16]