Atomic Structure

Question Paper 2

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Atomic Structure
Sub-Topic	
Paper Type	Theory
Booklet	Question Paper 2

Time Allowed: 70 minutes

Score: /58

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1	(a)	Explain what is meant by the term <i>nucleon number</i> .				
	(b)		mine exists naturally as a mixture of two stable isotopes, ⁷⁹ Br and ⁸¹ Br, with relative isotosses of 78.92 and 80.92 respectively.	pic		
		(i)	Define the term relative isotopic mass.			
		(ii)	Using the relative atomic mass of bromine, 79.90, calculate the relative isotopic abundance of ⁷⁹ Br and ⁸¹ Br.			
			of brand br.			
				[3]		
	(c)		mine reacts with the element $\bf A$ to form a compound with empirical formula $\bf ABr_3$. The centage composition by mass of $\bf ABr_3$ is $\bf A$, 4.31; Br, 95.69.	Γhe		
			culate the relative atomic mass, A_r , of A . e your answer to three significant figures.			
			A_{r} of A =	[3]		

(d)		elements in Period 3 of the Periodic Table show different behaviours in their reactions with gen.
	(i)	Describe what you would see when separate samples of magnesium and sulfur are reacted with oxygen.
		Write an equation for each reaction.
		magnesium
		sulfur
		[4
	(ii)	Write equations for the reactions of aluminium oxide, Al_2O_3 , with
		sodium hydroxide,
		hydrochloric acid.
		[2
(e)	Pho	sphorus reacts with chlorine to form PCl_5 .
	Stat	te the shape of and two different bond angles in a molecule of PCl_5 .
	sha	pe of PC $l_{\scriptscriptstyle 5}$
	bon	d angles in PC $l_{\scriptscriptstyle 5}$ [2]

[Total: 17]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2 (a) (i)On the diagrams below, show the outer electron arrangements of the atoms and ions indicated. (Use the symbol ↓↑ to represent a pair of electrons in an orbital.)

			Fe		Fe ²⁺ (aq)		Zn²+(aq)	
	(ii	i)	Use the above diagram are colourless.	s to	explain why Fe²+(aq) ions a	are c	coloured, whereas Zn²+(aq)	ions
								[4]
(b) V	Vhe	en concentrated HC <i>l</i> is a	adde	ed to a solution of Cu ²⁺ (aq)	ions	s, the solution turns yellow.	
	(1	i)	State the formula of the reaction that has occur		ecies responsible for the y	yellov	w colour and name the <i>ty_i</i>	pe of
	(ii	i)	the yellow solution, unt	ange il the	s that occur when NH ₃ (aq)			ıg, to

[7]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c)		en aqueous solutions of KI and $\rm K_2S_2O_8$ are mixed almost no reaction occurs, but when a drops of $\rm Fe^{2+}(aq)$ or $\rm Fe^{3+}(aq)$ are added, iodine, $\rm I_2(aq)$, is produced at a steady rate.
	(i)	Write an equation for the overall reaction.
	(ii)	State the precise role of the iron ions during this reaction.
((iii)	By means of equations or otherwise, explain why the presence of $either Fe^{2+} or Fe^{3+}$ is able to speed up the reaction.
		[3]

[Total: 14]

3 (a) Successive ionisation energies for the elements magnesium to barium are given in the table.

element	1st ionisation energy/kJ mol ⁻¹	2nd ionisation energy/kJ mol ⁻¹	3rd ionisation energy/kJ mol ⁻¹
Mg	736	1450	7740
Ca	590	1150	4940
Sr	548	1060	4120
Ва	502	966	3390

(i)	Explain why the first ionisation energies decrease down the group.
	[3]
(ii)	Explain why, for each element, there is a large increase between the 2nd and 3rd ionisation energies.
	[2]

(b) A sample of strontium, atomic number 38, gave the mass spectrum shown. The percentage abundances are given above each peak.

	(i)	Complete the full electronic configuration of strontium.	
		1s ² 2s ² 2p ⁶]
	(ii)	Explain why there are four different peaks in the mass spectrum of strontium.	
		[1]]
	(iii)	Calculate the atomic mass, A_r , of this sample of strontium. Give your answer to three significant figures.	
		$A_r = \dots $ [2]	1
		7, [2]	J
(c)		compound of barium, ${f A}$, is used in fireworks as an oxidising agent and to produce a green our.	1
	(i)	Explain, in terms of electron transfer, what is meant by the term oxidising agent.	
		[1]]
	(ii)	A has the following percentage composition by mass: Ba, 45.1; Cl, 23.4; O, 31.5.	
		Calculate the empirical formula of A .	
		empirical formula of A[3]]

(d) Some reactions involving magnesium and its compounds are shown in the reaction scheme below.

(i) Give the formulae of the compounds X, Y and Z.

	X	
	Υ	
	z	
		[3]
(ii)	Name the reagent needed to convert $\mathbf{Y}(s)$ into $\mathbf{Z}(aq)$ in reaction 1 and write an equation the reaction.	for
	reagent	
	equation	
		[2]
(iii)	How would you convert a sample of Z (s) into Y (s) in reaction 2 ?	
		[1]
(iv)	Give equations for the conversions of Mg into X, and Z(s) into Y.	
	Mg to X	
	Z to Y	
		[2]

[Total: 21]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- 4 Valence Shell Electron Pair Repulsion theory (VSEPR) is a model of electron-pair repulsion (including lone pairs) that can be used to deduce the shapes of, and bond angles in, simple molecules.
 - (a) Complete the table below by using simple hydrogen-containing compounds. One example has been included.

number of bond pairs	number of shape of lone pairs molecule		formula of a molecule with this shape
3	0	trigonal planar	BH_3
4	0		
3	1		
2	2		

[3]

(b) Tellurium, Te, proton number 52, is used in photovoltaic cells.

When fluorine gas is passed over tellurium at 150 $^{\circ}$ C, the colourless gas TeF $_{6}$ is formed.

(i) Draw a 'dot-and-cross' diagram of the TeF₆ molecule, showing outer electrons only.

- (ii) What will be the shape of the TeF₆ molecule?
- (iii) What is the F-Te-F bond angle in TeF₆?

.....