Atomic Structure

Question Paper 4

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Atomic Structure
Sub-Topic	
Paper Type	Theory
Booklet	Question Paper 4

Time Allowed: 83 minutes

Score: /69

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 (a) Natural bromine consists of the two isotopes ⁷⁹Br and ⁸¹Br in roughly equal proportions.

The mass spectrum of bromine consists of 5 peaks.

(1)	responsible for them.	es
ii)	Suggest the ratios of the relative abundances of	
	the three lines with the highest mass numbers,	
	the two lines with the lowest mass numbers.	
		 [4]
		r . T

Esters of 2,3-dibromopropan-1-ol with phosphoric acid are useful flame retardants used in plastics and fibres.

2,3-dibromopropan-1-ol can be made from propenal by the following two-stage process.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b) (i)	Draw the structure of the intermediate A in the box opposite.
(ii)	Suggest reagents and conditions for
	• reactio I,
	reaction II.

(c) The mass spectrum of 2,3-dibromopropan-1-ol includes the following peaks.

mass number	relative abundance
31	100
106	44
108	45
185	0.3
187	0.6
189	0.3

(i)	At what mass number would you expect the molecular ion to occur?

(ii) Identify the molecular formula (including isotopic composition where relevant) of these 6 peaks.

mass number	molecular formula
31	
106	
108	
185	
187	
189	

(-)	<i>K</i> _a					
(ii)	р <i>К_а</i>					
(b) The	e p <i>K_a</i> values	s of four carbo	xylic acids are listed in	the table	e below.	
		acid	formula of acid	p <i>K</i> _a		
		1	CH ₃ CH ₂ CO ₂ H	4.9		
		2	CH ₃ CHC <i>l</i> CO ₂ H	2.8		
		3	CH ₃ CC <i>l</i> ₂ CO ₂ H	1.4		
		4	CH ₂ ClCH ₂ CO ₂ H	4.1		
(i)	Describe a	and explain the	e trend in acid strength	shown	oy acids 1, 2	and 3.
(i)	Describe a	and explain the	e trend in acid strength	n shown	oy acids 1, 2	and 3.
(i) (ii)			e trend in acid strength			
	Suggest a	n explanation		e p <i>K</i> _a va	lues for acids	3 2 and 4.
(ii)	Suggest a	n explanation	for the difference in th	e p <i>K</i> _a va	lues for acids	3 2 and 4.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) A good way of making synthetic amino acids uses chloro-acids as intermediates.

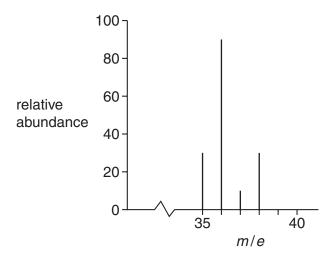
$$\mathsf{CH_3CH_2CO_2H} \xrightarrow{\begin{subarray}{c} \mathsf{C}l_2 + \mathsf{trace} \ \mathsf{of} \ \mathsf{P} \\ \mathsf{I} \end{subarray}} \mathsf{CH_3CHC}_l\mathsf{CO_2H} \xrightarrow{\begin{subarray}{c} \mathsf{NH_3(excess)} \\ \mathsf{II} \end{subarray}} \mathsf{CH_3CH(NH_2)CO_2H}$$

(i)	Suggest the role that the trace of phosphorus plays in reaction I.
(ii)	Write a fully balanced equation for reaction I.
(iii)	State the type of mechanism of reaction II.

(iv) When 10.0 g of propanoic acid was used in this 2-stage synthesis, a yield of 9.5 g of alanine was obtained.Calculate the overall percentage yield.

[5]

(d) In the solid state and in aqueous solutions, alanine exists as a zwitterion. Draw the structural formula of this zwitterion.


(a)											
()	Ехр	lain the me	aning o	of the term	isotope	₽.					
						•••••					
(b)	The is ⁵⁹	most com Co.	mon iso	otope of ire	n is ⁵⁶ F	Fe; t	the only na	aturally	/ occ	curring iso	otope of o
	Use and	the <i>Data</i> of ⁵⁹ Co.	Booklet	to comple	ete the t	table	e below to	show	the a	atomic str	ucture o
						I	number of				
		isoto	ре	proto	ns		neutrons		ele	ectrons	
		⁵⁶ Fe	€								
		⁵⁹ Cc	o								
(c)	A sa	ample of ire		the following	ng isotop 54	pic (compositio	on by r		5.	
			% b	y mass	5.84		91.68	2.1	7		
						-			-		
	(i)	Define the	e term <i>r</i>	elative ato	mic ma)SS.					
	(i)	Define the	e term <i>r</i>	elative ato	mic ma						
		Define the									

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4 (a) Define an isotope in terms of its sub-atomic particles.

[1]

(b) In a mass spectrometer some hydrogen chloride molecules will split into atoms. The mass spectrum of HC*l* is given. Chlorine has two isotopes. The hydrogen involved here is the isotope ¹₁H only.

- (i) What particle is responsible for the peak at mass 35?
- (c) Use the relative heights of the peaks to determine the proportions of the two isotopes of chlorine. Explain simply how you obtained your answer.

[2]

(d) Use your answer to (c) to explain why chlorine has a relative atomic mass of 35.5.

5

(a)Complete the electronic configurationsofthefollowingatoms.				
оху	gen: 1s ²			
fluc	orine: 1s ² [1]			
(b) Ac	ompound of fluorine and oxygen contains three atoms in each molecule.			
(i)	Predict its formula.			
.,	[1]			
(ii)	Draw a 'dot-and-cross' diagram to show its bonding.			
	741			
/:::\	[1]			
(iii)	Suggest the shape of this molecule. [1]			
	[1]			
(c)	Use E° values from the <i>Data Booklet</i> to predict the relative oxidising abilities of fluorine and chlorine.			
	[2]			
(ii)	Predict the <i>type of reaction</i> that would occur between the interhalogen compound chlorine			
	fluoride, ClF , and potassium bromide solution.			
/*** >				
(iii)	Construct an equation for this reaction.			
	[1] [Total: 9]			
	[Total: 8]			

6	(a)	Exp	lain what is meant by the term ionisation energy.
			[3]
	(b)	The	first seven ionisation energies of an element, A , in kJ mol ⁻¹ , are
			1012 1903 2912 4957 6274 21269 25398.
		(i)	State the group of the Periodic Table to which ${\bf A}$ is most likely to belong. Explain your answer.
			[2]
		(ii)	Complete the electronic configuration of the element in Period 2 that is in the same group as A .
			1s ² [1]
	(c)	forn	other element, Z , in the same period of the Periodic Table as A , reacts with chlorine to a compound with empirical formula $\mathbf{ZC}l_2$. The percentage composition by mass of $\mathbf{ZC}l_2$, 31.13; $\mathbf{C}l$, 68.87.
		(i)	Define the term relative atomic mass.
			[2]
		(ii)	Calculate the relative atomic mass, A_r , of Z . Give your answer to three significant figures.

(a)	lition to water, depending on their structure and bonding.	On	
	(i)	Write equations to show the behaviour of sodium chloride, NaC l , and silicon chloride SiC l_4 , when separately added to an excess of water.	de,
		NaCl	
		SiCl ₄	 [2]
	(ii)	State and explain the differences in behaviour of these two chlorides when added to wa in terms of their structure and the bonding found in the compounds.	ter,
			[4]
(e)	Sul	fur reacts with fluorine to form SF ₆ . State the shape and bond angle of SF ₆ .	
	sha	pe of SF ₆	
	bon	nd angle of SF ₆	
			[2]

[Total: 18]