Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Stationary waves

Question paper 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Superposition
Sub Topic	Stationary Waves
Paper Type	Theory
Booklet	Question paper 1

Time Allowed: 57 minutes

Score: /47

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

	1 (a) State what is meant by diffraction and by interference. diffraction:
	interference:
(b)	Light from a source S ₁ is incident on a diffraction grating, as illustrated in Fig. 6.1.
	diffraction light grating S ₁
	Fig. 6.1 (not to scale)
	The light has a single frequency of $7.06 \times 10^{14}\mathrm{Hz}$. The diffraction grating has 650 lines per millimetre.
	Calculate the number of orders of diffracted light produced by the grating. Do not include the zero order. Show your working.
	number =[3]
(c)	A second source S_2 is used in place of S_1 . The light from S_2 has a single frequency lower than that of the light from S_1 .
	State and explain whether more orders are seen with the light from ${\bf S}_2$.
	[1]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

2 (a) Two overlapping waves of the same type travel in the same direction. The variation with distance *x* of the displacement *y* of each wave is shown in Fig. 6.1.

Fig. 6.1

The speed of the waves is 240 m s⁻¹. The waves are coherent and produce an interference pattern.

,	Explain the meaning of concretence and interference.
	coherence:
	interference:
	[2]

(ii) Use Fig. 6.1 to determine the frequency of the waves.

(iii) State the phase difference between the waves.

- (iv) Use the principle of superposition to sketch, on Fig. 6.1, the resultant wave. [2]
- **(b)** An interference pattern is produced with the arrangement shown in Fig. 6.2.

Fig. 6.2 (not to scale)

Laser light of wavelength λ of 546 nm is incident on the slits S₁ and S₂. The slits are a distance 0.13 mm apart. The distance between the slits and the screen is 85 cm.

Two points on the screen are labelled A and B. The path difference between S_1A and S_2A is zero. The path difference between S_1B and S_2B is 2.5 λ . Maxima and minima of intensity of light are produced on the screen.

(i) Calculate the distance AB.

	distance = m [3]
(ii)	The laser is replaced by a laser emitting blue light. State and explain the change in the distance between the maxima observed on the screen.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3	(a) Explain how stationary waves are formed.	
		[2

(b) The arrangement of apparatus used to determine the wavelength of a sound wave is shown in Fig. 8.1.

Fig. 8.1

The loudspeaker emits sound of one frequency. The microphone is connected to a cathode-ray oscilloscope (c.r.o.).

The waveform obtained on the c.r.o. for one position of the microphone is shown in Fig. 8.2.

Fig. 8.2

The time-base setting of the c.r.o. is $0.20\,\mathrm{ms\,cm^{-1}}$.

(i)	Use Fig. 8.2 to show t	hat the frequency of the	sound is approximately	1300 Hz.
` '	- 5 -	1 1	11	

(ii)	Explain how the apparatus is used to determine the wavelength of the sound.
	ro
	[2]
(iii)	The wavelength of the sound wave is 0.26m. Calculate the speed of sound in this experiment.
	speed = ms ⁻¹ [2]

[2]

4 A hollow tube is used to investigate stationary waves. The tube is closed at one end and open at the other end. A loudspeaker connected to a signal generator is placed near the open end of the tube, as shown in Fig. 6.1.

Fig. 6.1

The tube has length *L*. The frequency of the signal generator is adjusted so that the loudspeaker produces a progressive wave of frequency 440 Hz. A stationary wave is formed in the tube. A representation of this stationary wave is shown in Fig. 6.1. Two points P and Q on the stationary wave are labelled.

(a) (i) Describe, in terms of energy transfer, the difference between a progressive wave and a stationary wave.

[1]
(ii) Explain how the stationary wave is formed in the tube.

[3]
(iii) State the direction of the oscillations of an air particle at point P.

[1]
(b) On Fig. 6.1 label, with the letter N, the nodes of the stationary wave.

phase difference =[1]

(c) State the phase difference between points P and Q on the stationary wave.

(d)	The	speed of sound in the tube	$e is 330 m s^{-1}$.
	Cal	culate	
	(i)	the wavelength of the sou	nd wave,
			wavelength = m [2]
	(ii)	the length L of the tube.	
			length = m [2]

5 Fig. 5.1 shows a string stretched between two fixed points P and Q.

Fig. 5.1

A vibrator is attached near end P of the string. End Q is fixed to a wall. The vibrator has a frequency of $50\,\text{Hz}$ and causes a transverse wave to travel along the string at a speed of $40\,\text{m}\,\text{s}^{-1}$.

(a) (i) Calculate the wavelength of the transverse wave on the string.

	wavelength = m [2]
(ii)	Explain how this arrangement may produce a stationary wave on the string.
	[2]

(b) The stationary wave produced on PQ at one instant of time *t* is shown on Fig. 5.2. Each point on the string is at its maximum displacement.

Fig. 5.2 (not to scale)

(i) On Fig. 5.2, label all the nodes with the letter **N** and all the antinodes with the letter **A**. [2]

(ii)	Use your answer in (a)(i) to calculate the length of string PQ.
	length = m [1]
(iii)	On Fig. 5.2, draw the stationary wave at time ($t + 5.0 \mathrm{ms}$). Explain your answer.
	[3]