Alkanes

Question Paper 1

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Hydrocarbons
Sub-Topic	Alkanes
Paper Type	Theory
Booklet	Question Paper 1

Time Allowed: 82 minutes

Score: /68

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

	ng chain alkanes suc drocarbons.	h as 4-methylheptane can be	'cracked' to produce shorter cha	ain
		— B C ₃ H ₈ +	a mixture of C , D and E (isomers of C ₅ H ₁₀)	
	4-methylheptane			
(i)	State the conditions	necessary for this reaction to ta		[1]
(ii)	Suggest the structure			
		В		[1]
(iii)		d E are isomers with the molectentrated acidified KMnO ₄ ,	ular formula C₅H₁₀.	
		es CO ₂ and compound F (C ₄ H ₈ 6	O ₂),	
		ve a 1:1 mixture of compounds		
	Suggest structures for		. 2 4 2	
	С	D	Е	
	F	G	Н	
				[3]
(iv)	Name the type of iso	merism shown between D and	Е.	
				[1]

(b)	Propene, CH ₃ CH=CH ₂ , reacts with bromine to give 1,2-dibromopropane.		
	(i)	How is this reaction usually carried out?	
		[1]	
	(ii)	State the type of reaction that is occurring here.	
		[1]	
	(iii)	Draw the mechanism of this reaction, including the structures of any intermediates, and any dipoles, lone pairs and curly arrows to show the movements of electrons.	

[2]

[Total: 10]

2	Cru	de o	oil is processed to give a wide variety of hydrocarbons.	
	(a)		e the names of one physical process and one chemical process carried out during th cessing of crude oil.	e
		phy	rsical process	
		che	emical process[2	
	(b)	Alka	anes and alkenes can both be obtained from crude oil.	
		(i)	Explain why alkanes are unreactive.	
			r	
		(ii)	State the bond angles in a molecule of	∠]
			ethane,	
			ethene	
	((iii)	State the shape of each molecule in terms of the arrangement of the atoms bonded to each carbon atom.	to
			ethane ethene]
	((iv)	Explain why these molecules have different shapes in terms of the carbon-carbon bond present.	ls
				٠,
	(c)		Use a series of equations to describe the mechanism of the reaction of ethane with chlorin to form chloroethane. Name the steps in this reaction.	e
				••
			[£	
		(ii)	Write an equation to show how butane could be produced as a by-product of this reaction	
				1]

3	(a)D	efine	etheterm mole.	
			[
	(b)	100	cm ³ of a gaseous hydrocarbon, C _x H _y , was reacted with 100 cm ³ of oxygen gas, an excess	3.
		The	e final volume of the gaseous mixture was 95 cm ³ .	
			s gaseous mixture was treated with concentrated, aqueous sodium hydroxide to absorb the bon dioxide present. This reduced the gas volume to 75 cm ³ .	те
		All	gas volumes were measured at 298 K and 100 kPa.	
		(i)	Write an equation for the reaction between sodium hydroxide and carbon dioxide.	11
		(ii)	Calculate the volume of carbon dioxide produced by the combustion of the hydrocarbon	
			volume of CO ₂ produced = cm ³ [1]
		(iii)	Calculate the volume of oxygen used up in the reaction with the hydrocarbon.	
			volume of O_2 used = cm ³ [1]
		(iv)		
			$C_xH_y +O_2 \rightarrowCO_2 + zH_2O$ [2
		(v)	Deduce the values of x , y and z in the equation in (iv).	
			<i>X</i> =	
			<i>y</i> =	
			Z =	

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) Another hydrocarbon, W, with the formula C₄H₈, reacts with hydrogen bromide, HBr, to give two products X and Y. X and Y are structural isomers of molecular formula C₄H₉Br.

Reaction of X with aqueous alkali produces an alcohol, Z, that has no reaction with acidified dichromate(V1).

(i) Give the structures and names of the compounds W, X, Y, and Z

W

(ii) When **W** reacts with hydrogen bromide, more **X** than **Y** is produced. Explain why.

[Total: 15]

4			ane, $ m C_3H_8$, and butane, $ m C_4H_{10}$, are components of LiquefiedPetroleumGas(LPG)which $ m \prime$ used as a fuel for domestic cooking and heating.
	(a)	(i)	To which class of compounds do these two hydrocarbons belong?
		(ii)	Write a balanced equation for the complete combustion of butane.
			[2]
	(b)		en propane or butane is used in cooking, the saucepan may become covered by a d black deposit.
		(i)	What is the chemical name for this black solid?
		(ii)	Write a balanced equation for its formation from butane.
			[2]
	(c)	Pro	pane and butane have different values of standard enthalpy change of combustion.
		Def	ine the term standard enthalpy change of combustion.
			[2]
	(d)	A 1:	25 cm ³ sample of propane gas, measured at 20 °C and 101 kPa, was completely burnt ir
		The	heat produced raised the temperature of 200 g of water by 13.8 °C. sume no heat losses occurred during this experiment.
		(i)	Use the equation $pV = nRT$ to calculate the mass of propane used.

(ii)	Use relevant data fithis experiment.	rom the <i>Data Bo</i>	ooklet to calculat	te the amount of	heat released in
(iii)	Use the data above by the burning of 1	•		to calculate the	energy produced
(a) The	e boiling points of me	athane ethane	nronane and h	Itane are diven	[5]
(6)	compound	CH ₄	CH ₃ CH ₃	CH ₃ CH ₂ CH ₃	CH ₃ (CH ₂) ₂ CH ₃
	boiling point/K	112	185	231	273
(i)	Suggest an explana	ation for the incr	ease in boiling p	ooints from meth	nane to butane.
(ii)	The isomer of butar Suggest an explana the table above.				
		•••••	•••••	•••••	
					[4]
					[Total: 15]

5

Crude oil contains a mixture of hydrocarbons together with other organic compounds which may contain nitrogen, oxygen or sulfur in their molecules.

			refinery, after the fractional distillation of crude oil, a number of other processes may including 'cracking', 'isomerisation', and 'reforming'.
(a)	(i)	What is meant by the term 'cracking' and why is it carried out?
		(ii)	Outline briefly how the cracking of hydrocarbons would be carried out.
	((iii)	Construct a balanced equation for the formation of heptane, $\rm C_7H_{16}$, by cracking tetradecane, $\rm C_{14}H_{30}$.
			[4]
S	ulf	ur-co	the sulfur-containing compounds present in crude oil is ethanethiol, $\rm C_2H_5SH$, the intaining equivalent of ethanol. Ethanethiol is toxic and is regarded as one of the transformation to compounds in existence.
(b)		boiling point of ethanol, C_2H_5OH , is higher than that of C_2H_5SH . Igest a reason for this difference.
			[1]

When ethanethiol is burned in an excess of air, three oxides of different elements are formed.

(c)	(i)	Construct a balanced equation for this reaction.
	(ii)	Two of the oxides formed cause serious environmental damage.
		For each of these oxides, identify the type of pollution caused and describe one consequence of this pollution.
		[6]
(d)		mall amount of ethanethiol is added to liquefied gases such as butane that are widely d in portable cooking stoves.
	Sug	ggest a reason for this.
		[1]
		ontaining compounds are removed from oil products at the refinery. The sulfur is ed and converted into SO ₂ , which is then used in the Contact process.
(e)	Sta	te the main operating details of the formation of SO_3 in the Contact process.
		[3]

[Total: 15]