Alkanes # **Question Paper 1** | Level | International A Level | |------------|-----------------------| | Subject | Chemistry | | Exam Board | CIE | | Topic | Hydrocarbons | | Sub-Topic | Alkanes | | Paper Type | Theory | | Booklet | Question Paper 1 | Time Allowed: 82 minutes Score: /68 Percentage: /100 #### **Grade Boundaries:** | A* | Α | В | С | D | Е | U | |------|--------|-----|-------|-------|-----|------| | >85% | 777.5% | 70% | 62.5% | 57.5% | 45% | <45% | | | ng chain alkanes suc
drocarbons. | h as 4-methylheptane can be | 'cracked' to produce shorter cha | ain | |-------|-------------------------------------|--|---|-----| | | | — B C ₃ H ₈ + | a mixture of C , D and E
(isomers of C ₅ H ₁₀) | | | | 4-methylheptane | | | | | (i) | State the conditions | necessary for this reaction to ta | | [1] | | (ii) | Suggest the structure | | | | | | | | | | | | | В | | [1] | | (iii) | | d E are isomers with the molectentrated acidified KMnO ₄ , | ular formula C₅H₁₀. | | | | | es CO ₂ and compound F (C ₄ H ₈ 6 | O ₂), | | | | | ve a 1:1 mixture of compounds | | | | | Suggest structures for | | . 2 4 2 | | | | | | | | | | С | D | Е | | | | | | | | | | F | G | Н | | | | | | | [3] | | (iv) | Name the type of iso | merism shown between D and | Е. | | | | | | | [1] | | (b) | Propene, CH ₃ CH=CH ₂ , reacts with bromine to give 1,2-dibromopropane. | | | |-----|---|--|--| | | (i) | How is this reaction usually carried out? | | | | | [1] | | | | (ii) | State the type of reaction that is occurring here. | | | | | [1] | | | | (iii) | Draw the mechanism of this reaction, including the structures of any intermediates, and any dipoles, lone pairs and curly arrows to show the movements of electrons. | | [2] [Total: 10] | 2 | Cru | de o | oil is processed to give a wide variety of hydrocarbons. | | |---|-----|-------|---|----| | | (a) | | e the names of one physical process and one chemical process carried out during th
cessing of crude oil. | e | | | | phy | rsical process | | | | | che | emical process[2 | | | | (b) | Alka | anes and alkenes can both be obtained from crude oil. | | | | | (i) | Explain why alkanes are unreactive. | | | | | | r | | | | | (ii) | State the bond angles in a molecule of | ∠] | | | | | ethane, | | | | | | ethene | | | | (| (iii) | State the shape of each molecule in terms of the arrangement of the atoms bonded to each carbon atom. | to | | | | | ethane ethene |] | | | (| (iv) | Explain why these molecules have different shapes in terms of the carbon-carbon bond present. | ls | | | | | | | | | | | | ٠, | | | (c) | | Use a series of equations to describe the mechanism of the reaction of ethane with chlorin to form chloroethane. Name the steps in this reaction. | e | | | | | | | | | | | | | | | | | | •• | | | | | | | | | | | [£ | | | | | (ii) | Write an equation to show how butane could be produced as a by-product of this reaction | | | | | | | 1] | | 3 | (a)D | efine | etheterm mole. | | |---|------|-------|--|----| | | | | [| | | | | | | | | | (b) | 100 | cm ³ of a gaseous hydrocarbon, C _x H _y , was reacted with 100 cm ³ of oxygen gas, an excess | 3. | | | | The | e final volume of the gaseous mixture was 95 cm ³ . | | | | | | s gaseous mixture was treated with concentrated, aqueous sodium hydroxide to absorb the bon dioxide present. This reduced the gas volume to 75 cm ³ . | те | | | | All | gas volumes were measured at 298 K and 100 kPa. | | | | | (i) | Write an equation for the reaction between sodium hydroxide and carbon dioxide. | 11 | | | | (ii) | Calculate the volume of carbon dioxide produced by the combustion of the hydrocarbon | | | | | | volume of CO ₂ produced = cm ³ [| 1] | | | | (iii) | Calculate the volume of oxygen used up in the reaction with the hydrocarbon. | | | | | | volume of O_2 used = cm ³ [| 1] | | | | (iv) | | | | | | | $C_xH_y +O_2 \rightarrowCO_2 + zH_2O$ [| 2 | | | | (v) | Deduce the values of x , y and z in the equation in (iv). | | | | | | <i>X</i> = | | | | | | <i>y</i> = | | | | | | Z = | | #### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ (c) Another hydrocarbon, W, with the formula C₄H₈, reacts with hydrogen bromide, HBr, to give two products X and Y. X and Y are structural isomers of molecular formula C₄H₉Br. Reaction of X with aqueous alkali produces an alcohol, Z, that has no reaction with acidified dichromate(V1). (i) Give the structures and names of the compounds W, X, Y, and Z W (ii) When **W** reacts with hydrogen bromide, more **X** than **Y** is produced. Explain why. [Total: 15] | 4 | | | ane, $ m C_3H_8$, and butane, $ m C_4H_{10}$, are components of LiquefiedPetroleumGas(LPG)which $ m \prime$ used as a fuel for domestic cooking and heating. | |---|-----|------|--| | | (a) | (i) | To which class of compounds do these two hydrocarbons belong? | | | | | | | | | (ii) | Write a balanced equation for the complete combustion of butane. | | | | | [2] | | | (b) | | en propane or butane is used in cooking, the saucepan may become covered by a d black deposit. | | | | (i) | What is the chemical name for this black solid? | | | | | | | | | (ii) | Write a balanced equation for its formation from butane. | | | | | [2] | | | (c) | Pro | pane and butane have different values of standard enthalpy change of combustion. | | | | Def | ine the term standard enthalpy change of combustion. | | | | | | | | | | | | | | | [2] | | | (d) | A 1: | 25 cm ³ sample of propane gas, measured at 20 °C and 101 kPa, was completely burnt ir | | | | The | heat produced raised the temperature of 200 g of water by 13.8 °C. sume no heat losses occurred during this experiment. | | | | (i) | Use the equation $pV = nRT$ to calculate the mass of propane used. | | (ii) | Use relevant data fithis experiment. | rom the <i>Data Bo</i> | ooklet to calculat | te the amount of | heat released in | |----------------|---|------------------------|---------------------------------|---|---| | (iii) | Use the data above by the burning of 1 | • | | to calculate the | energy produced | | (a) The | e boiling points of me | athane ethane | nronane and h | Itane are diven | [5] | | (6) | compound | CH ₄ | CH ₃ CH ₃ | CH ₃ CH ₂ CH ₃ | CH ₃ (CH ₂) ₂ CH ₃ | | | boiling point/K | 112 | 185 | 231 | 273 | | (i) | Suggest an explana | ation for the incr | ease in boiling p | ooints from meth | nane to butane. | | (ii) | The isomer of butar
Suggest an explana
the table above. | | | | | | | | ••••• | ••••• | ••••• | | | | | | | | | | | | | | | [4] | | | | | | | [Total: 15] | | | | | | | | 5 Crude oil contains a mixture of hydrocarbons together with other organic compounds which may contain nitrogen, oxygen or sulfur in their molecules. | | | | refinery, after the fractional distillation of crude oil, a number of other processes may including 'cracking', 'isomerisation', and 'reforming'. | |---|-----|-------|---| | (| a) | (i) | What is meant by the term 'cracking' and why is it carried out? | (ii) | Outline briefly how the cracking of hydrocarbons would be carried out. | | | | | | | | | | | | | (| (iii) | Construct a balanced equation for the formation of heptane, $\rm C_7H_{16}$, by cracking tetradecane, $\rm C_{14}H_{30}$. | | | | | [4] | | S | ulf | ur-co | the sulfur-containing compounds present in crude oil is ethanethiol, $\rm C_2H_5SH$, the intaining equivalent of ethanol. Ethanethiol is toxic and is regarded as one of the transformation to compounds in existence. | | (| b) | | boiling point of ethanol, C_2H_5OH , is higher than that of C_2H_5SH . Igest a reason for this difference. | | | | | | | | | | [1] | When ethanethiol is burned in an excess of air, three oxides of different elements are formed. | (c) | (i) | Construct a balanced equation for this reaction. | |-----|------|---| | | (ii) | Two of the oxides formed cause serious environmental damage. | | | | For each of these oxides, identify the type of pollution caused and describe one consequence of this pollution. | [6] | | (d) | | mall amount of ethanethiol is added to liquefied gases such as butane that are widely d in portable cooking stoves. | | | Sug | ggest a reason for this. | | | | [1] | | | | ontaining compounds are removed from oil products at the refinery. The sulfur is ed and converted into SO ₂ , which is then used in the Contact process. | | (e) | Sta | te the main operating details of the formation of SO_3 in the Contact process. | [3] | [Total: 15]