Alkenes

Question Paper 1

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Hydrocarbons
Sub-Topic	Alkenes
Paper Type	Theory
Booklet	Question Paper 1

Time Allowed: 70 minutes

Score: /58

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1 The structure of **H** is shown.

$$CH_3$$
 CH_2OH
 $C=C$
 CH_3 CH_3

- (a) H reacts with both cold, dilute, acidified potassium manganate(VII) and with hot, concentrated, acidified potassium manganate(VII).
 - (i) Give the structure of the organic product of the reaction of **H** with cold, dilute, acidified potassium manganate(VII).

(ii) Give the structures of the organic products of the reaction of **H** with hot, concentrated, acidified potassium manganate(VII).

(b) (i) Complete the reaction scheme to show the mechanism of the reaction of H with bromine to form J.

Include all necessary curly arrows, lone pairs and charges.

[1]

[2]

(ii)) Explain the origin of the dipole on the bromine molecule.			
		[1]		
J is	formed as an equimolar mixture of isomers.			
(iii)	State the type of isomerism shown by J.			
(iv)	Draw the structures of the two isomers of J .	[1]		

[2]

[Total: 10]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2 Alkanes and alkenes both react with bromine.

(a)	Ехр	lain how and why bromine can be used to distinguish between an alkene and an alkane.
		[2]
(b)	The	reaction of ethane with bromine forms a mixture of products.
	(i)	State the essential conditions for this reaction to occur.
	(ii)	Give the full name of the mechanism of this reaction.
((iii)	Give the equation for a termination step that could occur, producing a hydrocarbon .
	(iv)	Give the equation for one propagation step involved in the formation of dibromoethane from bromoethane during this reaction.
(c)	The	reaction of ethene with bromine forms a single product.
	(i)	Give the full name of the mechanism of this reaction.
		[2]

(ii) Complete the diagram below to illustrate this mechanism. Include all relevant charges, partial charges, curly arrows and lone pairs.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(d) Chloroethene can be polymerised to form a polymer commonly known as PVC. Draw a diagram of the structure of PVC including **three** repeat units.

[2]

(e) Chloroethane undergoes a series of reactions as shown in the diagram below.

product
$$\mathbf{Q}$$

NaCN

 $H \longrightarrow C \longrightarrow C \longrightarrow H$
 $Cl \mapsto H$
 $OH^-(aq)$

product \mathbf{P}

(i)	Give the reagent and conditions necessary for reaction 1.
	[2]
(ii)	Give the skeletal formula of product P .

[1]

(iii) Give the displayed formula and the name of product Q.

......[2]

[Total: 20]

3	A hydro	ocarbon, \mathbf{P} , with the formula C_6H_{12} readily decolourises bromine.				
		ction with hot, concentrated, acidified potassium manganate(VII) solution a single organic , \mathbf{Q} , is obtained.				
		an orange precipitate when reacted with 2,4-dinitrophenylhydrazine, 2,4-DNPH reagent, no reaction with Tollens' reagent.				
	(a) (i)	Explain these observations.				
		[4]				
	(ii)	Draw the skeletal formula of P and give its name.				
		name of P [2]				
	(iii)	Draw the skeletal formula of Q and give its name.				
		name of Q				
		[2]				

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b) There are several structural isomers of **P** that also decolourise bromine, but only four of these structural isomers exhibit geometrical (cis-trans) isomerism.

Give the structures of any three structural isomers of P that exhibit geometrical (cis-trans) isomerism.

[3]

[Total: 11]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4 P, **Q**, **R** and **S** are structural isomers with the molecular formula C₅H₁₀.

All four compounds readily decolourise bromine in the dark.

(a) Give the structural formulae of P, Q, R, S and T.

P, R and S do not exhibit stereoisomerism but Q exists as a pair of geometrical (cis-trans) isomers.

All four compounds react with hot concentrated, acidified potassium manganate(VII) to produce a variety of products as shown in the table.

compound	products		
Р	CO ₂ and CH ₃ CH ₂ CH ₂ CO ₂ H		
Q	CH ₃ CO ₂ H and CH ₃ CH ₂ CO ₂ H		
R	CO ₂ and T (C ₄ H ₈ O)		
S	CH ₃ CO ₂ H and (CH ₃) ₂ CO		

T reacts with 2,4-dinitrophenylhydrazine reagent, 2,4-DNPH, to form an orange crystalline product but does not react with Fehling's reagent.

	Р	Q
	R	s
	T	[5]
b)	(i)	Explain what is meant by the term stereoisomerism.

name		(ii)	Draw the displayed formulae of the geometrical isomers of Q and name then	n both.	
(c) Name the organic product of the reaction of T with sodium borohydride, NaBH ₄ . [1]					
(c) Name the organic product of the reaction of T with sodium borohydride, NaBH ₄ . [1]					
(c) Name the organic product of the reaction of T with sodium borohydride, NaBH ₄ . [1]					
[1]			name name		[2]
	(c)	Nar	me the organic product of the reaction of T with sodium borohydride, NaBH ₄ .		
[Total: 10]					[1]
				[Total: 1	10]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

5 (a) Oseltamivir is an antiviral drug that slows the spread of the influenza(flu)virus.

oseltamivir

Circle **two** bonds, each in a different functional group, that could be easily hydrolysed in the body. [2]

(b)	Oseltamivir is a chiral drug. This drug is usually taken as a single optical isomer rather than as a mixture of isomers.
	Suggest one benefit of taking a drug in this way.
	[1]
(c)	Oseltamivir is a competitive inhibitor of an enzyme produced by the flu virus.
	Explain the meaning of the term <i>competitive inhibitor</i> and state how its action could be overcome.

(d) ATP plays an important role in metabolic reactions in living organisms.

ATP

What is t	the function	on of ATP in	living orga	anisms?		
					 	 [1]

[Total: 7]