Alkenes

Question Paper 4

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Hydrocarbons
Sub-Topic	Alkenes
Paper Type	Theory
Booklet	Question Paper 4

Time Allowed: 69 minutes

Score: /57

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1	(a)	trer	•	s of these chlori	des with water.	nents as examples, describe the Suggest an explanation for any occur.
						[3]
	(b)		e standard enthalp given in the follow		mation of lead(I	I) chloride and lead(IV) chloride
				compound	$\Delta H_{\rm f}^{\Theta}/{\rm kJmol^{-1}}$	
				PbCl ₂ (s)	-359	
				$PbCl_4(I)$	-329	
			e these data, and halpy changes for			e Data Booklet, to calculate the
		(i)	$CCl_2(g) + Cl_2(g)$) → CCl ₄ (g)	
						$\Delta H^{\Theta} = \dots kJ \text{mol}^{-1}$
		(ii)	$PbCl_2(s) + Cl_2(s)$	g) \longrightarrow PbC l_d	(I)	
						$\Delta H^{\Theta} = \dots kJ \text{mol}^{-1}$
		(iii)		r answers to part ion states vary do		uggest how the relative stabilities
						[3]
						[Total: 6]

2 Compounds containing the allyl group, CH ₂ =CHCH ₂ - , have pungent smells and are found in onions and garlic. Allyl alcohol, CH ₂ =CHCH ₂ OH, is a colourless liquid which is soluble in water.				
(a)	Allyl alcohol behaves as an alkene and as a primary alcohol.			
	Give the structural formula of the organic compound formed when allyl alcohol is			
	(i) reacted with Br ₂ ,			
	(ii) heated under reflux with an acidified solution of $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ ions.			
(b)	[2] When allyl alcohol is reacted with ${\rm MnO}_2$ at room temperature, propenal, ${\rm CH}_2{\rm =CHCHO}$ is formed.			
	What type of reaction is this?			
	[1]			
(c)				
	CH_2 = $CHCH_2OH \xrightarrow{ruthenium(IV) catalyst} CH_3CH_2CHO$			
	The reactant and the product are isomers. What form of isomerism do they display?[1]			

(d)	Allyl alcohol can be converted into propanal in two steps without the use of a ruthenium(IV) catalyst.					
	CH	$_{2}$ =CHCH $_{2}$ OH $\stackrel{\text{step I}}{\longrightarrow}$ CH $_{3}$ CH $_{2}$ CH $_{2}$ OH $\stackrel{\text{step II}}{\longrightarrow}$ CH $_{3}$ CH $_{2}$ CHO				
	What reagents and conditions would be used for each step?					
	step I					
	rea	gent(s)				
	con	dition(s)				
	ste	р ІІ				
	reagent(s)					
	con	dition(s)[4]				
(e)		considering your answers to (b) and (d) , suggest what is unusual about the single- oreaction in (c) .				
		[1]				
(f)	Sug	gest the structural formula of the organic compound formed when allyl alcohol is				
	(i)	reacted with cold, dilute MnO ₄ ⁻ ions,				
	(ii)	heated under reflux with acidified MnO ₄ ⁻ ions.				

A student obtained the following results when analysing an organic compound, H. 3

	test	observation
test 1	relative molecular mass	72
test 2	% composition by mass	C, 66.7%; H, 11.1%; O, 22.2%
test 3	reactions with Br ₂ (aq)	Br ₂ decolourised
test 4	reaction with Na(s)	H ₂ (g) evolved
test 5	reaction with warm Cr ₂ O ₇ ²⁻ /H ⁺	green colour observed

The student allowed test 5 to go to completion and then investigated the product of test 5 with the following result.

test 6	reaction with 2,4-dinitrophenylhydrazine	no reaction
--------	--	-------------

(a) Calculate the molecular formula of H.

(b)	What can be deduced about the nature of H by the following tests?		
	(i)	test 3	
	(ii)	test 4	 [2]
(c)	(i)	What functional group would have given a positive result in test 6?	[4]
	(ii)	What functional group is shown to be present in H by tests 5 and 6?	
			 [2]

[2]

(d)	On testing a sample of H , the student found that it was not chiral.
	H did, however, show cis-trans isomerism.
	How does cis-trans isomerism arise in an organic molecule?
	[2]
(e)	Use all of the information above to draw labelled, displayed formulae of the stereoisomers of compound ${\bf H}.$

[2]

[Total: 10]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4 Some perfumes and scents of flowers and fruit contain compounds which are structural isomers. Two such examples are citronellol and geraniol.

(a)	Confirm that citronellol and geraniol are isomers by calculating their molecular formula
	and their relative molecular mass, $M_{\rm r}$.

- (i) Molecular formula
- (ii) M_r [2]
- (b) Name two functional groups present in **both** molecules.
 - (i)
 - (ii)[3]

Citronellol and geraniol also show stereo isomerism.

(c) On the diagram of the structure of citronellol above, draw a circle around a chiral carbon atom. [1]

(a)	(1)	represent a part of the molecule.]
	(ii)	Explain why geraniol has no optical isomers.
		[2]
(e)	Stat	te what you would expect to see if citronellol was reacted with aqueous bromine.
		[1]
(f)		w structures of the organic products when geraniol reacts with each of the following gents.
	(i)	an excess of H ⁺ /Cr ₂ O ₇ ²⁻ under reflux
	(ii)	ethanoic acid in the presence of an acidic catalyst
	(iii)	hydrogen bromide, HBr

(a) Draw a section of poly(propene), showing three repeat units.

5

		[1]
/b)	Tox	
(D)	10 (what homologous series does poly(propene) belong?
		[1]
(c)	repa	en a rupture (hernia) or a deep wound, e.g. as a result of a sports accident, is aired by surgery, a mesh is inserted below the muscle tissue so that on healing the und is less likely to reopen and the repair is stronger.
	Poly	y(propene) is the recommended material for the mesh.
	(i)	Suggest two reasons why poly(propene) is used rather than a natural fibre such as cotton.
	(ii)	Members of the homologous series you have given in (b) are considered to have two different kinds of reactions. Explain why neither of them can take place in a poly(propene) mesh inserted in living body tissues.
		[4]
		[Total : 6]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

6 P, **Q** and **R** are structural isomers with the molecular formula C₄H₈.

All three compounds readily decolourise bromine in the dark.

P and **Q** do not exhibit stereoisomerism but **R** exists as a pair of geometrical (cis-trans) isomers.

All three compounds react with hot concentrated, acidified potassium manganate(VII) to produce a variety of products as shown in the table.

compound	products
Р	CO ₂ and S (C ₃ H ₆ O)
Q	CO ₂ and CH ₃ CH ₂ CO ₂ H
R	CH ₃ CO ₂ H only

S reacts with 2,4-dinitrophenylhydrazine reagent, 2,4-DNPH, to form an orange crystalline product but does not react with Fehling's reagent.

(a)	Giv	e the structural formulae of P , Q , R and S .			
	Ρ	Q			
	R	s [2			
(b) (i) Explain what is meant by the term stereoisomerism.					
		[2	2]		

	(11)	Draw the displayed formulae of the geo	ometrical isomers of R and name them both.	
		name	name [2]
(c)		te a reagent that could be used for the re uction.	duction of S and name the organic product of th	ıis
	rea	gent	product[2]
			[Total: 1	0]