Alkenes # **Question Paper 4** | Level | International A Level | |------------|-----------------------| | Subject | Chemistry | | Exam Board | CIE | | Topic | Hydrocarbons | | Sub-Topic | Alkenes | | Paper Type | Theory | | Booklet | Question Paper 4 | Time Allowed: 69 minutes Score: /57 Percentage: /100 #### **Grade Boundaries:** | A* | Α | В | С | D | Е | U | |------|--------|-----|-------|-------|-----|------| | >85% | 777.5% | 70% | 62.5% | 57.5% | 45% | <45% | | 1 | (a) | trer | • | s of these chlori | des with water. | nents as examples, describe the Suggest an explanation for any occur. | |---|-----|-------|---|---|--|---| [3] | | | (b) | | e standard enthalp
given in the follow | | mation of lead(I | I) chloride and lead(IV) chloride | | | | | | compound | $\Delta H_{\rm f}^{\Theta}/{\rm kJmol^{-1}}$ | | | | | | | PbCl ₂ (s) | -359 | | | | | | | $PbCl_4(I)$ | -329 | | | | | | e these data, and halpy changes for | | | e Data Booklet, to calculate the | | | | (i) | $CCl_2(g) + Cl_2(g)$ |) → CCl ₄ (g |) | | | | | | | | | $\Delta H^{\Theta} = \dots kJ \text{mol}^{-1}$ | | | | (ii) | $PbCl_2(s) + Cl_2(s)$ | g) \longrightarrow PbC l_d | (I) | | | | | | | | | $\Delta H^{\Theta} = \dots kJ \text{mol}^{-1}$ | | | | (iii) | | r answers to part
ion states vary do | | uggest how the relative stabilities | | | | | | | | | | | | | | | | [3] | | | | | | | | [Total: 6] | | 2 Compounds containing the allyl group, CH ₂ =CHCH ₂ - , have pungent smells and are found in onions and garlic.
Allyl alcohol, CH ₂ =CHCH ₂ OH, is a colourless liquid which is soluble in water. | | | | | |---|---|--|--|--| | (a) | Allyl alcohol behaves as an alkene and as a primary alcohol. | | | | | | Give the structural formula of the organic compound formed when allyl alcohol is | | | | | | (i) reacted with Br ₂ , | | | | | | (ii) heated under reflux with an acidified solution of $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ ions. | | | | | (b) | [2] When allyl alcohol is reacted with ${\rm MnO}_2$ at room temperature, propenal, ${\rm CH}_2{\rm =CHCHO}$ is formed. | | | | | | What type of reaction is this? | | | | | | [1] | | | | | (c) | | | | | | | CH_2 = $CHCH_2OH \xrightarrow{ruthenium(IV) catalyst} CH_3CH_2CHO$ | | | | | | The reactant and the product are isomers. What form of isomerism do they display?[1] | | | | | | | | | | | (d) | Allyl alcohol can be converted into propanal in two steps without the use of a ruthenium(IV) catalyst. | | | | | | |------------|--|--|--|--|--|--| | | CH | $_{2}$ =CHCH $_{2}$ OH $\stackrel{\text{step I}}{\longrightarrow}$ CH $_{3}$ CH $_{2}$ CH $_{2}$ OH $\stackrel{\text{step II}}{\longrightarrow}$ CH $_{3}$ CH $_{2}$ CHO | | | | | | | What reagents and conditions would be used for each step? | | | | | | | | step I | | | | | | | | rea | gent(s) | | | | | | | con | dition(s) | | | | | | | ste | р ІІ | | | | | | | reagent(s) | | | | | | | | con | dition(s)[4] | | | | | | (e) | | considering your answers to (b) and (d) , suggest what is unusual about the single-
oreaction in (c) . | | | | | | | | | | | | | | | | [1] | | | | | | (f) | Sug | gest the structural formula of the organic compound formed when allyl alcohol is | | | | | | | (i) | reacted with cold, dilute MnO ₄ ⁻ ions, | (ii) | heated under reflux with acidified MnO ₄ ⁻ ions. | | | | | A student obtained the following results when analysing an organic compound, H. 3 | | test | observation | |--------|---|------------------------------| | test 1 | relative molecular mass | 72 | | test 2 | % composition by mass | C, 66.7%; H, 11.1%; O, 22.2% | | test 3 | reactions with Br ₂ (aq) | Br ₂ decolourised | | test 4 | reaction with Na(s) | H ₂ (g) evolved | | test 5 | reaction with warm Cr ₂ O ₇ ²⁻ /H ⁺ | green colour observed | The student allowed test 5 to go to completion and then investigated the product of test 5 with the following result. | test 6 | reaction with 2,4-dinitrophenylhydrazine | no reaction | |--------|--|-------------| |--------|--|-------------| (a) Calculate the molecular formula of H. | (b) | What can be deduced about the nature of H by the following tests? | | | |-----|--|--|---------| | | (i) | test 3 | | | | (ii) | test 4 |
[2] | | (c) | (i) | What functional group would have given a positive result in test 6? | [4] | | | (ii) | What functional group is shown to be present in H by tests 5 and 6? | | | | | |
[2] | [2] | (d) | On testing a sample of H , the student found that it was not chiral. | |-----|---| | | H did, however, show cis-trans isomerism. | | | How does cis-trans isomerism arise in an organic molecule? | | | | | | | | | [2] | | (e) | Use all of the information above to draw labelled, displayed formulae of the stereoisomers of compound ${\bf H}.$ | [2] [Total: 10] #### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ **4** Some perfumes and scents of flowers and fruit contain compounds which are structural isomers. Two such examples are citronellol and geraniol. | (a) | Confirm that citronellol and geraniol are isomers by calculating their molecular formula | |-----|--| | | and their relative molecular mass, $M_{\rm r}$. | - (i) Molecular formula - (ii) M_r[2] - (b) Name two functional groups present in **both** molecules. - (i) - (ii)[3] Citronellol and geraniol also show stereo isomerism. (c) On the diagram of the structure of citronellol above, draw a circle around a chiral carbon atom. [1] | (a) | (1) | represent a part of the molecule.] | |-----|-------|---| | | (ii) | Explain why geraniol has no optical isomers. | | | | [2] | | (e) | Stat | te what you would expect to see if citronellol was reacted with aqueous bromine. | | | | [1] | | (f) | | w structures of the organic products when geraniol reacts with each of the following gents. | | | (i) | an excess of H ⁺ /Cr ₂ O ₇ ²⁻ under reflux | | | | | | | (ii) | ethanoic acid in the presence of an acidic catalyst | | | | | | | | | | | (iii) | hydrogen bromide, HBr | (a) Draw a section of poly(propene), showing three repeat units. 5 | | | [1] | |-----|------|---| | /b) | Tox | | | (D) | 10 (| what homologous series does poly(propene) belong? | | | | [1] | | (c) | repa | en a rupture (hernia) or a deep wound, e.g. as a result of a sports accident, is aired by surgery, a mesh is inserted below the muscle tissue so that on healing the und is less likely to reopen and the repair is stronger. | | | Poly | y(propene) is the recommended material for the mesh. | | | (i) | Suggest two reasons why poly(propene) is used rather than a natural fibre such as cotton. | | | | | | | | | | | | | | | (ii) | Members of the homologous series you have given in (b) are considered to have two different kinds of reactions. Explain why neither of them can take place in a poly(propene) mesh inserted in living body tissues. | | | | | | | | | | | | | | | | [4] | | | | [Total : 6] | #### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ **6 P**, **Q** and **R** are structural isomers with the molecular formula C₄H₈. All three compounds readily decolourise bromine in the dark. **P** and **Q** do not exhibit stereoisomerism but **R** exists as a pair of geometrical (cis-trans) isomers. All three compounds react with hot concentrated, acidified potassium manganate(VII) to produce a variety of products as shown in the table. | compound | products | |----------|---| | Р | CO ₂ and S (C ₃ H ₆ O) | | Q | CO ₂ and CH ₃ CH ₂ CO ₂ H | | R | CH ₃ CO ₂ H only | **S** reacts with 2,4-dinitrophenylhydrazine reagent, 2,4-DNPH, to form an orange crystalline product but does not react with Fehling's reagent. | (a) | Giv | e the structural formulae of P , Q , R and S . | | | | |--|-----|--|----|--|--| | | Ρ | Q | | | | | | R | s [2 | | | | | (b) (i) Explain what is meant by the term stereoisomerism. | | | | | | | | | | | | | | | | [2 | 2] | | | | | (11) | Draw the displayed formulae of the geo | ometrical isomers of R and name them both. | | |-----|------|--|---|-----| name | name [| 2] | | (c) | | te a reagent that could be used for the re uction. | duction of S and name the organic product of th | ıis | | | rea | gent | product[| 2] | | | | | [Total: 1 | 0] | | | | | | |