Alkenes

Question Paper 5

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Hydrocarbons
Sub-Topic	Alkenes
Paper Type	Theory
Booklet	Question Paper 5

Time Allowed: 68 minutes

Score: /56

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 (a) Polymers can be formed by addition or condensation polymerisation. Complete the table.

polymer	method of polymerisation
nylon	
PVC (polychloroethene)	
Terylene	

[1]

(b) *Nomex* is a polymeric material with excellent flame-resistant properties. It contains a polymer made from the two monomers shown below.

$$H_2N$$
 NH_2

Draw the structure of the polymer showing **two** repeat units. The linkages between monomer units should be shown fully displayed.

(c) Proteins are natural polymers. Explain what is meant by the *primary structure* of a protein.

[1]

[2]

	the diagram to show an example of how the α -helix secondary structure in proteins is bilised.
	[2]
	tertiary structure of a protein is destroyed during the process of denaturation.
(i)	the addition of alkali,
(ii)	the addition of Hg ²⁺ ions,
(iii)	heating to 70 °C.
	[3]
	[Total: 9]
	The Exp

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- 2 Crotonaldehyde, CH₃CH=CHCHO, occurs in soybean oils.
 - (a) In the boxes below, write the **structural formula** of the organic compound formed when crotonaldehyde is reacted separately with each reagent under suitable conditions. If you think no reaction occurs, write 'NO REACTION' in the box.

reaction	reagent	product
A	Br ₂ in an inert organic solvent	
В	PCl_3	
С	H ₂ and Ni catalyst	
D	NaBH ₄	
E	K ₂ Cr ₂ O ₇ /H ⁺	

[5]

(b) Crotonaldehyde exists in more than one stereoisomeric form.
Draw the displayed formulae of the stereoisomers of crotonaldehyde.
Label each isomer.

(c)	Draw th	ne skeletal formula of crotonaldehyde.	
(d)	acidifie	oduct of reaction E in the table opposite will react with a solution d manganate(VII) ions. The structural formulae of the organic products when the reagent is	[1] containing
		d, dilute;	
	(ii) hot	t, concentrated.	
			[3]
			[Total: 12]

3	onio	unds containing the allyl group, $\mathrm{CH_2=CHCH_2-}$, have pungent smells and are found and garlic. ohol, $\mathrm{CH_2=CHCH_2OH}$, is a colourless liquid which is soluble in water.	ıd in	
	(a)	Ally	l alcohol behaves as a primary alcohol and as an alkene.	
			e the structural formula of the organic compound formed when allyl alcohol is read arately with each of the following reagents.	cted
		(i)	acidified potassium dichromate(VI), heating under reflux	
	((ii)	bromine in an inert organic solvent	
	(iii)	cold, dilute, acidified potassium manganate(VII)	
	(1	iv)	hot, concentrated, acidified potassium manganate(VII)	
				[5]
	(b)	Ally	l alcohol undergoes the following reactions.	
		(i)	When reacted with concentrated HCl at 100 °C, CH ₂ =CHCH ₂ Cl is formed.	
			State as fully as you can what type of reaction this is.	
	((ii)	When reacted with MnO_2 at room temperature, CH_2 =CHCHO is formed.	
			What type of reaction is this?	
				 [2]

(c)	Ally	alcohol can be converted into propanal in two steps.						
		$CH_2 \!\!=\!\! CHCH_2OH \xrightarrow{step I} CH_3CH_2CH_2OH \xrightarrow{step II} CH_3CH_2CHO$						
	(i)	What reagents and conditions would be used for each step?						
	step I							
		reagent(s)						
		condition(s)						
		step II						
		reagent(s)						
		condition(s)						
	(ii)	Allyl alcohol and propanal are isomers.						
	What form of isomerism do they display?							
		[5]						
(d)	Ally wat	rl alcohol may also be converted into propanal by using a ruthenium(IV) catalyst inter.						
		ruthenium(IV) catalyst CH₂=CHCH₂OH						
	Suggest what is unusual about this single step reaction.							
		[1]						
		[Total: 13]						

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4 The compound *trans-*4-hydroxy-2-nonenal (HNE) is thought to lead to infections of the lung when cigarettes are smoked.

observation

[5]

HNE is a reactive compound.

(c)	Give the structural formulae of all of the carbon-containing compounds formed in each
	case when HNE is reacted separately with the following reagents.

(i) hot concentrated manganate(VII) ions in acid solution

(ii) hot phosphorus trichloride, ${
m PC}l_3$

(iii) sodium tetrahydridoborate(III), $NaBH_4$

[4]

[Total: 10]

5

The structural formulae of six different compounds, P – U , are given below.							
CH	CH ₃ CH=CHCH ₂ CH ₃		CH ₃ CH ₂ COCH ₂ CH ₃	CH ₂ =CHC	H ₂ CH ₂ CH ₃		
	F	P	Q	I	R		
CH ₃	CH ₂ CH ₂	₂ CH ₂ CH ₂ OH	HOCH ₂ CH ₂ CH(OH)CH ₃	CH ₃ CH ₂ CH	H ₂ OCH ₂ CH ₃		
	5	S	Т	ı	IJ		
(a) (i)	What	is the empirical	formula of compound T ?				
(ii)	Draw	the skeletal forn	nula of compound S .				
					[2]		
(b) (i)	Comp	ounds S and U	are isomers.				
	What type of isomerism do they show?						
(ii)		f the six formula	e P – U can each be drawı	n in two forms	which are known as		
	Which	n two compound	s have formulae that can be	e drawn in two	forms?		
	What	type of stereois	omerism does each show?				
	Identif	fy each compou					
		compound	type of stereoisom	nerism			

(c)	Cor	mpound S can be converted into compound R .	
	(i)	What type of reaction is this?	
	(ii)	What reagent would you use for this reaction?	
((iii)	Write the structural formula of the compound formed when T undergoes the reaction using an excess of the reagent you have used in (c)(ii) .	same
			[3]
(d)	Cor	mpound P may be converted into compound Q in a two-step reaction.	
		CH ₃ CH=CHCH ₂ CH ₃ step 1 intermediate step 2 CH ₃ CH ₂ COCH ₂ CH ₃ Q	
	(i)	What is the structural formula of the intermediate compound formed in this seque	nce?
	(ii)	Outline how step 1 may be carried out to give this intermediate compound.	
((iii)	What reagent would be used for step 2?	
			[4]
		[Total	J. 401

[Total: 12]