Alkenes Question Paper 6

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Торіс	Hydrocarbons
Sub-Topic	Alkenes
Paper Type	Theory
Booklet	Question Paper 6

Time Allowed:		70 minu	70 minutes				
Score:		/58	/58				
Percentage:		/100	/100				
Grade Bou	ndaries:						
A*	А	В	C	D	E	U	
>85%	777.5%	70%	62.5%	57.5%	45%	<45%	

1 (a) Complete the electronic structures of the Cr^{3+} and Mn^{2+} ions.

Cr ³⁺	1s²2s²2p ⁶

Mn²⁺ 1s²2s²2p⁶

[2]

(b) (i) Describe what observations you would make when dilute KMnO₄(aq) is added slowly and with shaking to an acidified solution of FeSO₄(aq) until the KMnO₄ is in a large excess.

(ii) Construct an ionic equation for the reaction that occurs.

- [4]
- (c) By selecting relevant E° data from the *Data Booklet* explain why acidified solutions of Fe²⁺(aq) are relatively stable to oxidation by air, whereas a freshly prepared precipitate of Fe(OH)₂ is readily oxidised to Fe(OH)₃ under alkaline conditions.

relevant E^{Θ} values and half equations

explanation [4] (d) Predict the organic products of the following reactions and draw their structures in the boxes below. You may use structural or skeletal formulae as you wish.

[4]

(e) $KMnO_4$ and $K_2Cr_2O_7$ are the reagents that can be used to carry out the following transformation.

- (i) Draw the structure of intermediate **E** in the box above.
- (ii) Suggest reagents and conditions for the following.

 2 Menthone, $C_{10}H_{18}O$, is a cyclic ketone that occurs in oil of peppermint.

menthone

- (a) Use asterisks (*) on the formula above to identify any chiral centres in the molecule of menthone.
 [2]
- (b) Menthone can be reduced to menthol, which can be dehydrated to a mixture of two alkenes, L and M.

(c) When heated with concentrated, acidified KMnO₄(aq), one of the two alkenes L or M produces the dicarboxylic acid N.

(i) Give the letter of the alkene that produced **N** by this reaction.

.....

(ii) Suggest the structure of the product, **P**, of the reaction between the other alkene you have drawn and hot concentrated acidified KMnO₄.

(iii) Suggest one chemical test that would enable you to distinguish between N and P.

reagent(s)..... observation......[3]

(d) Chlorocyclohexane can be prepared by bubbling HCl(g) through a solution of cyclohexene.

Suggest the mechanism of this 2-stage reaction by means of a diagram. Include all whole or partial charges, and represent the movements of electron pairs by curly arrows.

3 Propanone, CH₃COCH₃, an important industrial solvent, can be converted into another industrially important solvent, MIBK, by the following sequence.

- (a) When F is formed in step I no other compound is produced. Suggest a structural formula for F, which contains one –OH group.
- (b) Compound **G** has two functional groups.

Name **one** functional group present in **G** and show how you would identify it. Put your answers in the table.

functional group in G	reagent used in test	what would be seen

- (c) G is formed from F in step II.Use your answers to (a) and (b) to suggest
 - (i) what type of reaction occurs in step II,

.....

(ii) a reagent for step II.

.....

[3]

[1]

(d) The production of MIBK from **G** in step III involves the hydrogenation of the >C=C< group and is carried out catalytically. A mixture of compounds is formed because the >C=O group is also reduced.

What reagent(s) and solvent are normally used in a laboratory to reduce a >C=O group without reducing a >C=C< group present in the same molecule?

G has a number of structural isomers.

(e) Draw the displayed formulae of a pair of structural isomers of **G** which contain the CH₃CO– group and which exhibit *cis-trans* isomerism.

Label each structure *cis* or *trans* and give your reasoning.

[3]

[Total: 11]

4 The structural formulae of six different compounds, **A** – **F**, are given below. **Each** compound contains four carbon atoms in its molecule.

$CH_3CH_2COCH_3$	$CH_2 = CHCH_2CH_3$
В	С
HOCH ₂ CH ₂ CH ₂ CH ₂ OH	$\rm CH_3\rm CH_2\rm O\rm CH_2\rm CH_3$
E	F
	CH ₃ CH ₂ COCH ₃ B HOCH ₂ CH ₂ CH ₂ CH ₂ OH E

- (a) (i) What is the empirical formula of compound E?
 - (ii) Draw the skeletal formula of compound **D**.

(iii) Structural formulae do not show all of the isomers that may exist for a given molecular formula. Which **two** compounds **each** show **different** types of isomerism and what type of isomerism does each compound show? Identify each compound by its letter.

compound	type of isomerism

[4]

Compound **D** may be converted into compound **C**.

(b) (i) What type of reaction is this?

.....

(ii) What reagent would you use for this reaction?

.....

(iii) What is formed when compound **E** undergoes the same reaction using an excess of the same reagent?

.....

Compound **A** may be converted into compound **B** in a two-stage reaction.

 $\mathsf{CH}_3\mathsf{CH}{=}\mathsf{CHCH}_3 \xrightarrow{\text{stage I}} \text{ intermediate } \xrightarrow{\text{stage II}} \mathsf{CH}_3\mathsf{CH}_2\mathsf{COCH}_3$

- (c) (i) What is the structural formula of the intermediate compound formed in this sequence?
 - (ii) Outline how stage I may be carried out to give this intermediate compound.

	(iii)	What reagent would be used for stage II?	
			[4]
(d)	Cor	npounds D and F are isomers.	
	Wh	at type of isomerism do they show?	
			[1]
			[Total: 12]

5 (a) The viscosity of engine oil can be improved by the addition of certain medium chainlength polymers.

A portion of the chain of one such polymer is shown below.

 $-\mathsf{CH}_2\mathsf{CH}(\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3)\mathsf{CH}_2\mathsf{CH}(\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3)\mathsf{CH}_2-$

On average, the molecules of the medium-chain polymer contain 40 carbon atoms.

(i) Suggest the structure of the monomer.

	(ii)	How many monomer units are incorporated into the average molecule of the polymer?
		[2]
(b)	Use crac	ed car engine oil can be recycled for use as a fuel by the processes of distillation and cking.
	(i)	Assuming a typical molecule of engine oil has the formula $C_{40}H_{82}$, suggest an equation for a cracking reaction that could produce diesel fuel with the formula $C_{16}H_{34}$ and other hydrocarbons only.
	(ii)	What conditions are needed for this cracking reaction?
	(iii)	Considering only the bonds broken and the bonds formed during the reaction, use the <i>Data Booklet</i> to calculate the enthalpy change for the reaction you wrote in (b)(i) .
	(iv)	Comment on how the conditions you described in (b)(ii) relate to the enthalpy change you calculated in (b)(iii) .
		[4]