#### **Save My Exams! - The Home of Revision**

For more awesome GCSE and A level resources, visit us at <a href="https://www.savemyexams.co.uk/">www.savemyexams.co.uk/</a>

## **Communication**

## Question paper 6

| Level      | International A Level |
|------------|-----------------------|
| Subject    | Physics               |
| Exam Board | CIE                   |
| Topic      | Communication         |
| Sub Topic  |                       |
| Paper Type | Theory                |
| Booklet    | Question paper 6      |

Time Allowed: 59 minutes

Score: /49

Percentage: /100

| A*   | А      | В   | С     | D     | E   | U    |
|------|--------|-----|-------|-------|-----|------|
| >85% | '77.5% | 70% | 62.5% | 57.5% | 45% | <45% |

| 1 (a)             |      | e and explain two advantages of the transmission of information in digital, rather a nalogue, form.                    |
|-------------------|------|------------------------------------------------------------------------------------------------------------------------|
|                   | 1    |                                                                                                                        |
|                   |      |                                                                                                                        |
|                   |      |                                                                                                                        |
|                   | 2    |                                                                                                                        |
|                   |      |                                                                                                                        |
|                   |      | [4]                                                                                                                    |
| (b)               | Cor  | nvert                                                                                                                  |
|                   | (i)  | the decimal number 13 to a four-bit digital number,                                                                    |
|                   |      | [1]                                                                                                                    |
|                   | (ii) | the digital number 0101 to a decimal number.                                                                           |
|                   |      | [1]                                                                                                                    |
| (c)               |      | analogue signal is to be transmitted digitally. A block diagram for part of the smission system is shown in Fig. 12.1. |
|                   |      | block X block Y                                                                                                        |
| analogu           | 10   | parallel                                                                                                               |
| analogu<br>signal | _    | ADC to transmission recovered analogue signal                                                                          |
|                   |      | Oignal                                                                                                                 |
|                   |      | Fig. 12.1                                                                                                              |
|                   | (i)  | Complete Fig. 12.1 by labelling block X and block Y. [2]                                                               |
|                   | (ii) | State the purpose of the parallel-to-serial converter.                                                                 |
|                   |      |                                                                                                                        |
|                   |      | [2]                                                                                                                    |

(d) The original analogue signal is shown in Fig. 12.2. The recovered signal after transmission is shown in Fig. 12.3.

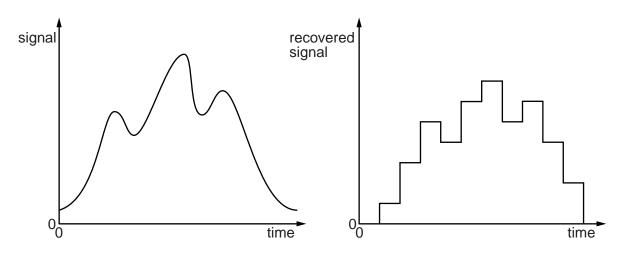
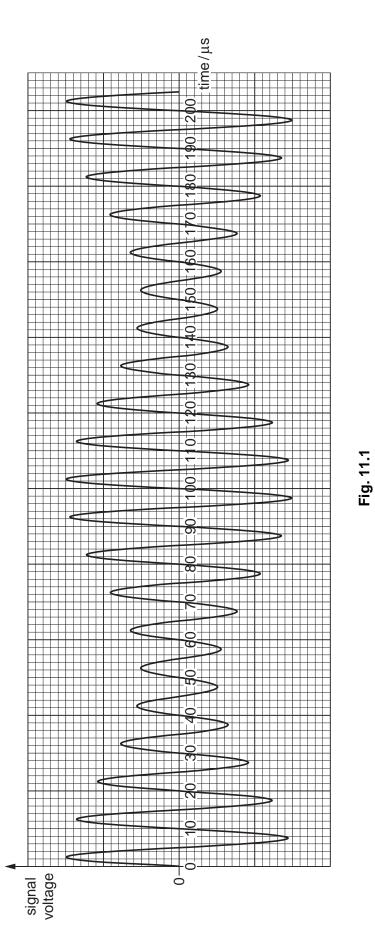




Fig. 12.2 Fig. 12.3

Suggest and explain two ways in which the reproduction of the input signal may be improved.

|     | 1 |
|-----|---|
|     |   |
|     |   |
|     |   |
|     |   |
|     |   |
|     | 2 |
|     |   |
|     |   |
|     |   |
|     |   |
| [4] |   |

2 The variation with time of the signal transmitted from an aerial is shown in Fig. 11.1.



| (a) | Stat          | te the | name o    | f this typ | e of modu    | late  | d transr | nission. | •      |       |         |          |        |     |
|-----|---------------|--------|-----------|------------|--------------|-------|----------|----------|--------|-------|---------|----------|--------|-----|
|     |               |        |           |            | •••••        |       |          |          |        |       |         |          |        | [1] |
| (b) | Use           | Fig.   | 11.1 to c | letermine  | e the frequ  | uenc  | y of     |          |        |       |         |          |        |     |
|     | (i)           | the    | carrier w | ave,       |              |       |          |          |        |       |         |          |        |     |
|     | (ii)          | the i  | nformati  | on signa   | ıl.          |       | frequer  | ncy =    |        |       |         |          | Hz     | [2] |
| (c) | (i)           |        |           |            | 1.2, draw t  | he fı | requenc  |          | trum ( | the v | ariatio | n with t | freque | ncy |
|     |               |        | uency ax  |            | ,            |       |          |          |        |       | oloval  | it vara  | 00 011 |     |
|     | sigr<br>volta |        |           |            |              |       |          |          |        |       | •       |          |        |     |
|     |               |        |           |            |              |       |          |          | fuo    |       |         |          |        |     |
|     |               |        |           |            |              |       |          |          | Tre    | equer | ıcy     |          |        |     |
|     |               |        |           |            | F            | ig. 1 | 11.2     |          |        |       |         |          |        | [3] |
|     | (ii)          | Dete   | ermine th | e bandw    | vidth of the | e sig | nal.     |          |        |       |         |          |        |     |
|     |               |        |           |            |              |       | bandwi   | dth =    |        |       |         |          | Hz     | [1] |

3 A block diagram representing part of a mobile phone network is shown in Fig. 12.1.

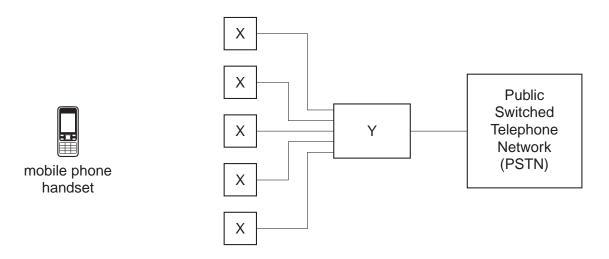



Fig. 12.1

| (a) | Sta  | te what is represented by                                                       |
|-----|------|---------------------------------------------------------------------------------|
|     | (i)  | the blocks labelled X,                                                          |
|     |      | [1                                                                              |
|     | (ii) | the block labelled Y.                                                           |
|     |      | [1                                                                              |
| (b) | A u  | ser of a mobile phone is making a call.                                         |
|     |      | plain the role of the components in the boxes labelled X and Y during the call. |
|     |      |                                                                                 |
|     |      |                                                                                 |
|     |      |                                                                                 |
|     |      |                                                                                 |
|     |      |                                                                                 |

### Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4 A signal is to be transmitted along a cable system of total length 125 km.

The cable has an attenuation of 7 dB km<sup>-1</sup>. Amplifiers, each having a gain of 43 dB, are placed at 6 km intervals along the cable, as illustrated in Fig. 12.1.

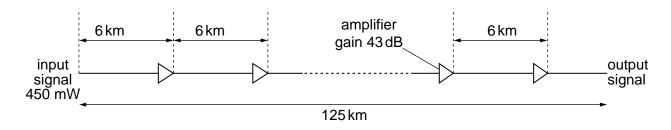



Fig. 12.1

|     |     | Fig. 12.1                                                                       |    |
|-----|-----|---------------------------------------------------------------------------------|----|
| (a) | Sta | te what is meant by the attenuation of a signal.                                |    |
|     |     |                                                                                 | [1 |
| (b) | Cal | culate                                                                          |    |
|     | (i) | the total attenuation caused by the transmission of the signal along the cable, |    |
|     |     |                                                                                 |    |

(ii) the total signal gain as a result of amplification by all of the amplifiers along the cable.

# **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at <a href="https://www.savemyexams.co.uk/">www.savemyexams.co.uk/</a>

| (c) | The input signal has a power of 450 mW. Use your answers in <b>(b)</b> to calculate the output power of the signal as it leaves the cable system. |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                   |
|     |                                                                                                                                                   |
|     |                                                                                                                                                   |
|     | power = mW [3]                                                                                                                                    |
|     |                                                                                                                                                   |

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

**5** (a) Fig. 13.1 is a block diagram illustrating part of a mobile phone handset used for receiving a signal from a base station.

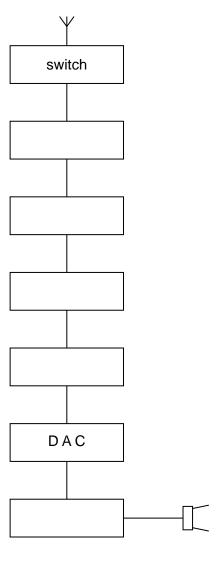



Fig. 13.1

[4]

Complete Fig. 13.1 by labelling each of the blocks.

(b) Explain the role of the base station and the cellular exchange when a mobile phone is switched on and before a call is made or received.

## **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at <a href="https://www.savemyexams.co.uk/">www.savemyexams.co.uk/</a>

| 6 |     | erent frequencies and wavelengths are used in different channels of communication.  Igest why                                        |
|---|-----|--------------------------------------------------------------------------------------------------------------------------------------|
|   | (a) | infra-red radiation rather than visible light is usually used with optic fibres,                                                     |
|   |     |                                                                                                                                      |
|   |     |                                                                                                                                      |
|   |     | [2]                                                                                                                                  |
|   | (b) | the base stations in mobile phone networks operate on UHF,                                                                           |
|   |     |                                                                                                                                      |
|   |     |                                                                                                                                      |
|   |     | [2]                                                                                                                                  |
|   | (c) | for satellite communication, frequencies of the order of GHz are used, with the uplink having a different frequency to the downlink. |
|   |     |                                                                                                                                      |
|   |     |                                                                                                                                      |
|   |     | [0]                                                                                                                                  |