For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Point Charges & Electric Potential

Question paper 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Electric Fields
Sub Topic	Point Charges & Electric Potential
Paper Type	Theory
Booklet	Question paper 2

Time Allowed: 64 minutes

Score: /53

Percentage: /100

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1	A h	elium	n nucleus contains two protons.
	In a	a mod e sep	del of the helium nucleus, each proton is considered to be a charged point mass. aration of these point masses is assumed to be 2.0×10^{-15} m.
	(a)	For	the two protons in this model, calculate
		(i)	the electrostatic force,
			electrostatic force =N [2]
		(ii)	the gravitational force.
			gravitational force =N [2]
	(b)	Usi	ng your answers in (a) , suggest why
		(i)	there must be some other force between the protons in the nucleus,
			[3]
		(ii)	this additional force must have a short range.
			[0]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

2 An α -particle and a proton are at rest a distance 20 μ m apart in a vacuum, as illustrated in Fig. 4.1.

Fig. 4.1

(a)	(i)	State Coulomb's law.
		[2]
	(ii)	The α -particle and the proton may be considered to be point charges. Calculate the electric force between the α -particle and the proton.
		force = N [2]
(b)	(i)	Define electric field strength.

(ii) A point P is distance x from the α -particle along the line joining the α -particle to the proton (see Fig. 4.1). The variation with distance x of the electric field strength E_{α} due to the α -particle alone is shown in Fig. 4.2.

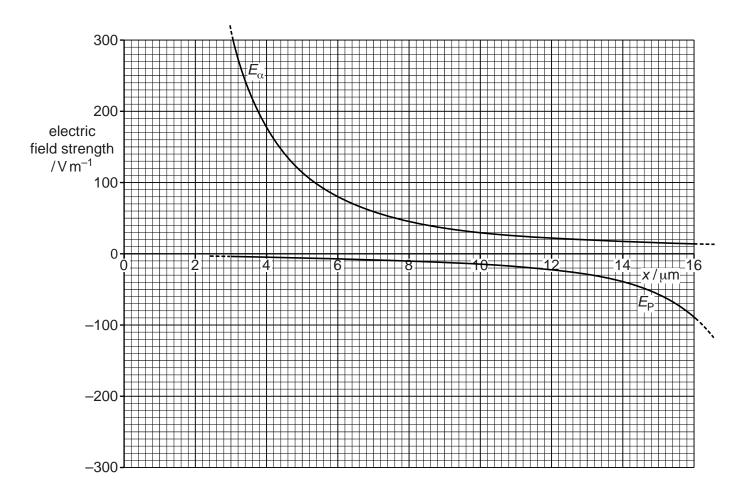


Fig. 4.2

The variation with distance x of the electric field strength $E_{\rm P}$ due to the proton alone is also shown in Fig. 4.2.

1.	Explain why the two separate electric fields have opposite signs.
	[2]

2. On Fig. 4.2, sketch the variation with x of the combined electric field due to the α -particle and the proton for values of x from 4 μ m to 16 μ m. [3]

3	(a)	Define electric potential at a point.

(b) Two point charges A and B are separated by a distance of 20 nm in a vacuum, as illustrated in Fig. 3.1.

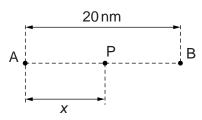


Fig. 3.1

A point P is a distance x from A along the line AB. The variation with distance x of the electric potential $V_{\rm A}$ due to charge A alone is shown in Fig. 3.2.

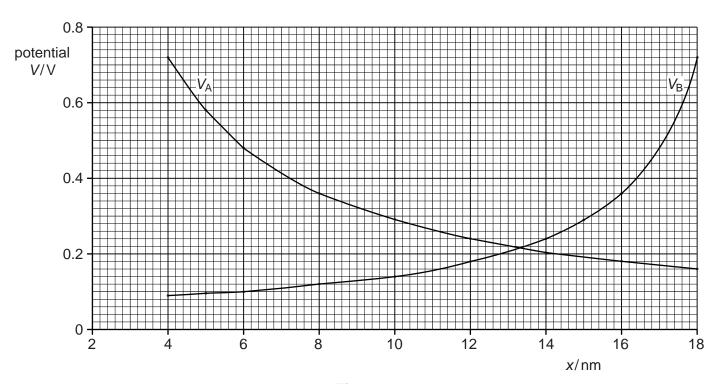


Fig. 3.2

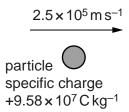
The variation with distance x of the electric potential $V_{\rm B}$ due to charge B alone is also shown in Fig. 3.2.

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(i)	State and explain whether the charges A and B are of the same, or opposite, sign.
	[2]
(ii)	By reference to Fig. 3.2, state how the combined electric potential due to both charges may be determined.
	[1]
(iii)	Without any calculation, use Fig. 3.2 to estimate the distance x at which the combined electric potential of the two charges is a minimum.
	x = nm [1]
(iv)	The point P is a distance $x = 10 \text{nm}$ from A. An α -particle has kinetic energy E_{K} when at infinity.
	Use Fig. 3.2 to determine the minimum value of $E_{\rm K}$ such that the α -particle may travel from infinity to point P.
	<i>E</i> _K = J [3]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/


4	(a)	Define electric potential at a point.

(b) A charged particle is accelerated from rest in a vacuum through a potential difference *V*. Show that the final speed *v* of the particle is given by the expression

$$v = \sqrt{\left(\frac{2Vq}{m}\right)}$$

where $\frac{q}{m}$ is the ratio of the charge to the mass (the specific charge) of the particle.

(c) A particle with specific charge +9.58 × 10⁷ C kg⁻¹ is moving in a vacuum towards a fixed metal sphere, as illustrated in Fig. 4.1.

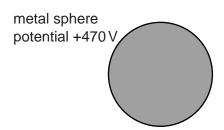


Fig. 4.1

The initial speed of the particle is $2.5 \times 10^5 \, \text{m} \, \text{s}^{-1}$ when it is a long distance from the sphere.

The sphere is positively charged and has a potential of +470 V.

Use the expression in **(b)** to determine whether the particle will reach the surface of the sphere.

[2]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

5	(a)		insulated metal sphere of radius R is situated in a vacuum. The charge q on the ere may be considered to be a point charge at the centre of the sphere.
		(i)	State a formula, in terms of R and q , for the potential V on the surface of the sphere.
			[1]
		(ii)	Define capacitance and hence show that the capacitance ${\it C}$ of the sphere is given by the expression
			$C = 4\pi \varepsilon_0 R.$
			[1]
	(b)	An	isolated metal sphere has radius 45 cm.
		(i)	Use the expression in (a)(ii) to calculate the capacitance, in picofarad, of the sphere.
			capacitance = pF [2]
		(ii)	The sphere is charged to a potential of 9.0×10^5 V. A spark occurs, partially discharging the sphere so that its potential is reduced to 3.6×10^5 V.
			Determine the energy of the spark.

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

6 (a) State what is meant by a line of force in

electric force field around the sphere.

(1)	a gravitational field,
	[
(ii)	an electric field.
	[2

(b) A charged metal sphere is isolated in space. State one similarity and one difference between the gravitational force field and the

[3]

(c) Two horizontal metal plates are separated by a distance of 1.8 cm in a vacuum. A potential difference of 270 V is maintained between the plates, as shown in Fig. 3.1.

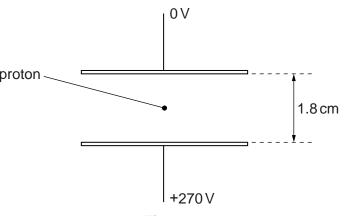


Fig. 3.1

A proton is in the space between the plates.

Explain quantitatively why, when predicting the motion of the proton between the plates, the gravitational field is not taken into consideration.