Halogenoalkanes

Question Paper 3

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Halogen Derivatives
Sub-Topic	Halogenoalkanes
Paper Type	Theory
Booklet	Question Paper 3

Time Allowed: 65 minutes

Score: /54

Percentage: /100

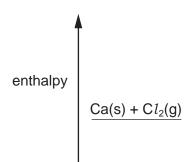
Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1		cium chloride, $CaCl_2$, is an important industrial chemical used in refrigeration plants, for cing roads and for giving greater strength to concrete.
	(a)	Show by means of an equation what is meant by the lattice energy of calcium chloride.
		[1]


(b) Suggest, with an explanation, how the lattice energies of the following salts might compare in magnitude with that of calcium chloride.

(i)	calcium fluoride, CaF ₂

(ii)	calcium sulfide, CaS
	[3]

(c) Use the following data, together with additional data from the $\it Data\ Booklet$, to calculate the lattice energy of $\it CaCl_2$.

standard enthalpy change of formation of CaCl ₂	-796 kJ mol ⁻¹
standard enthalpy change of atomisation of Ca(s)	+178 kJ mol ⁻¹
electron affinity per mole of chlorine atoms	-349 kJ mol ⁻¹

(d)	When a solution of CaCl ₂ is added to a solution of the dicarboxylic acid, malonic acid,
	the salt calcium malonate is precipitated as a white solid. The solid has the following
	composition by mass: Ca, 28.2%; C, 25.2%; H, 1.4%; O, 45.2%.

(i) Calculate the empirical formula of calcium malonate from the	rm	cal to	rormι	mula	a o	ot ca	ilcium	maior	nate	trom	these	data
--	----	--------	-------	------	-----	-------	--------	-------	------	------	-------	------

(ii) Suggest the structural formula of malonic acid.

[3]

[Total: 10]

2	Ethane	reacts with chlorine to form chloroethane.
		$C_2H_6(g) + Cl_2(g) \rightarrow C_2H_5Cl(g) + HCl(g)$
	(a)	Use bond energies from the <i>Data Booklet</i> to calculate the enthalpy change for this reaction. Include a sign in your answer.
		enthalpy change = kJ mol ⁻¹ [3]
	(ii)	State the conditions needed for this reaction to occur.
		[1]
	(iii)	Use a series of equations to describe the mechanism of this reaction including the names of each stage and an indication of how butane can be produced as a minor by-product.
		[5]
	(b) Cbl	
		croethane can be converted back into ethane by a two-stage process via an intermediate npound, ${\bf X}$.
		C_2H_5Cl reaction 1 \times \times C_2H_6
	(i)	Give the name of X.
		[1]
	(ii)	Suggest the reagent and conditions needed for reaction 1.
		[2]

(iii) Suggest the reagent and conditions needed for reaction 2.

[Total: 13]

3	(a) Bot air.	h chloroalkanes and acyl chlorides react with water, but only acyl chlorides fume in moist
	(i)	State which product causes the fumes in this reaction.
	(ii)	Explain why the reactivities of chloroalkanes and acyl chlorides differ.
		[1]
		mpound ${f R}$ is a useful intermediate in the synthesis of pharmaceutical compounds. It can be de from compound ${f P}$ by the following route.
		$\begin{array}{c c} & \text{Step 1} & \text{CO}_2 H & \text{Step 2} & \\ \hline & \text{CO}_2 H & \\ \end{array}$
		P, C ₈ H ₁₀ step 3 CH ₃ CH ₂ NH ₂
		NCH₂CH₃ step 4 R
		Q , C ₁₀ H ₉ NO ₂
	(i)	Suggest structures for the starting material P and the intermediate Q . [2
	(ii)	Suggest reagents and conditions for the following steps in the above scheme.
		step 1step 2
		step 4
		[3]

4			ogens and their compounds have a wide variety of uses and the chemical and physical es of the elements show regular patterns related to their positions in Group VII.
	(a)	Chle	orine, bromine and iodine all react with hydrogen.
		(i)	State the trend in the reactivities of the halogens with hydrogen.
			[1]
		(ii)	Explain this trend in terms of bond energies.
			[2]
	(b)	In th	ne laboratory it is not very convenient to prepare hydrogen halides from their elements.
		Hyd	lrogen halides can be prepared from their salts.
		(i)	Write an equation for the reaction of calcium chloride, ${\rm CaC}l_2$, with concentrated sulfuric acid.
			[1]
		(ii)	Explain why hydrogen iodide is not prepared in this way.
			[1]
	((iii)	When potassium bromide, KBr, reacts with concentrated sulfuric acid, sulfur dioxide, SO_2 , is produced. State what you would see and write an equation for this reaction.

(c)	(i)	Give the structures of the four structural isomers of $\rm C_4H_9Br$ and identify each as primary, secondary or tertiary.
		[4]
	(ii)	Name the isomer of C_4H_9Br that contains a chiral centre and draw the three-dimensional structures of the two optical isomers.
		name
		structures
		[3]
(d)		ueous silver nitrate solution was added to separate tubes containing chloroethane, moethane and iodoethane. The tubes were heated in a water bath.
	pre	ellow precipitate appeared first in the tube containing iodoethane, followed by a cream cipitate in the tube containing bromoethane and finally a white precipitate appeared in the e containing chloroethane.
	Exp	plain these observations.

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(e)	Give the full name of the mechanism for the reaction between aqueous sodium hydroxide
	and bromoethane.

(ii) Complete the diagram below to represent this mechanism. Include all necessary curly arrows, partial charges and lone pairs.

(f) In the past, CFCs such as CF₃Cl were widely used as refrigerants.

(i) State a property of CFCs which makes them suitable for use as refrigerants.

......[1]

(ii) State the damaging effect of CFCs in the upper atmosphere.

Explain your answer.

.....

[Total: 24]

[2]

[2]