For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Current, Potential Difference & Power

Question paper 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Current of Electricity
Sub Topic	Current, Potential Difference & Power
Paper Type	Theory
Booklet	Question paper 1

Time Allowed: 80 minutes

Score: /66

Percentage: /100

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a)		stinguish between electromotive force (e.m.f.) and potential difference (p.d.).
			[2]
	(b)		attery of e.m.f. 12V and internal resistance 0.50Ω is connected to two identical lamps, as wn in Fig. 6.1.
			12V
			Fig. 6.1 th lamp has constant resistance. The power rating of each lamp is 48W when connected oss a p.d. of 12V.
		(i)	Explain why the power dissipated in each lamp is not 48W when connected as shown in Fig. 6.1.
			[1]
		(ii)	Calculate the resistance of one lamp.
			resistance = Ω [2]

	(iii)	Calculate the current in the battery.
		current = A [2]
	(iv)	Calculate the power dissipated in one lamp.
		power =W [2]
(c)		nird identical lamp is placed in parallel with the battery in the circuit of Fig. 6.1. Describe explain the effect on the terminal p.d. of the battery.
		[2]

2	(a)	Define potential difference (p.d.).
	(b)	A power supply of e.m.f. 240V and zero internal resistance is connected to a heater as shown in Fig. 6.1.
		240 V
		Fig. 6.1
		The wires used to connect the heater to the power supply each have length 75 m. The wires have a cross-sectional area 2.5mm^2 and resistivity $18\text{n}\Omega\text{m}$. The heater has a constant resistance of 38Ω .
		(i) Show that the resistance of each wire is 0.54Ω .
		[7]
		(ii) Calculate the current in the wires.
		A. FO
	(current = A [3] (iii) Calculate the power loss in the wires.

(c)	The wires to the heater are replaced by wires of the same length and material bu having a cross-sectional area of 0.50 mm ² . Without further calculation, state and explain
	the effect on the power loss in the wires.
	[2
	•

3 Two resistors A and B have resistances R_1 and R_2 respectively. The resistors are connected in series with a battery, as shown in Fig. 6.1.

Fig. 6.1

The battery has electromotive force (e.m.f.) E and zero internal resistance.

(a) State the energy transformation that occurs in

	(i)	the battery,	
			. [1]
	(ii)	the resistors.	
			. [1]
(b)	The	current in the circuit is I .	
	Stat	te the rate of energy transformation in	
	(i)	the battery,	
			. [1]
	(ii)	the resistor A.	
			. [1]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) The resistors are made from metal wires. Data for the resistors are given in Fig. 6.2.

resistor	Α	В
resistivity of metal	ρ	$\rho/2$
length of wire	1	l
diameter of wire	d	2d

Fig. 6.2

Use informatior	from	Fig. 6.	.2 to	determine	the	ratio
-----------------	------	---------	-------	-----------	-----	-------

power dissipated in A power dissipated in B

	-
ratio =	 131

(d) The resistors A and B are connected in parallel across the same battery of e.m.f. E. Determine the ratio

power dissipated in A power dissipated in B

4	(a)	Def	ine <i>charge</i> .
	(b)		eater is made from a wire of resistance 18.0Ω and is connected to a power supply of V. The heater is switched on for 2.60 Ms.
		Cal	culate
		(i)	the power transformed in the heater,
			power = W [2]
		(ii)	the current in the heater,
			current = A [1]
	((iii)	the charge passing through the heater in this time,
			charge C [2]
	((iv)	charge =

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

5	(a)	Define potential difference (p.d.).
		ra:
		[1]

(b) A battery of electromotive force 20 V and zero internal resistance is connected in series with two resistors R₁ and R₂, as shown in Fig. 6.1.

Fig. 6.1

The resistance of $\rm R_2$ is $600\,\Omega.$ The resistance of $\rm R_1$ is varied from 0 to $400\,\Omega.$

Calculate

(i) the maximum p.d. across R₂,

(ii) the minimum p.d. across R_2 .

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) A light-dependent resistor (LDR) is connected in parallel with R₂, as shown in Fig. 6.2.

Fig. 6.2

When the light intensity is varied, the resistance of the LDR changes from $5.0\,k\Omega$ to $1.2\,k\Omega$.

(i) For the **maximum** light intensity, calculate the total resistance of R₂ and the LDR.

6

(a)	The	output of a heater is 2.5 kW when connected to a 220 V supply.
	(i)	Calculate the resistance of the heater.
		resistance = Ω [2]
	(ii)	The heater is made from a wire of cross-sectional area $2.0\times10^{-7}\text{m}^2$ and resistivity $1.1\times10^{-6}\Omega\text{m}$.
		Use your answer in (i) to calculate the length of the wire.
		length = m [3]
(b)	The	supply voltage is changed to 110V.
	(i)	Calculate the power output of the heater at this voltage, assuming there is no change in the resistance of the wire.
		change in the resistance of the wire.
		power = W [1]
	(ii)	State and explain quantitatively one way that the wire of the heater could be changed to give the same power as in (a) .

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

A battery of electromotive force 12V and negligible internal resistance is connected to two resistors and a light-dependent resistor (LDR), as shown in Fig. 4.1.

Fig. 4.1

An ammeter is connected in series with the battery. The LDR and switch S are connected across the points XY.

(a) The switch S is open. Calculate the potential difference (p.d.) across XY.

(b) The switch S is closed. The resistance of the LDR is 4.0 k Ω . Calculate the current in the ammeter.

(c)	The switch S remains closed. The intensity of the light on the LDR is increased. State and explain the change to		
	(i)	the ammeter reading,	
			[2]
	(ii)	the p.d. across XY.	
			[2]