Alcohols

Question Paper 1

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Hydroxy Compounds
Sub-Topic	Alcohols
Paper Type	Theory
Booklet	Question Paper 1

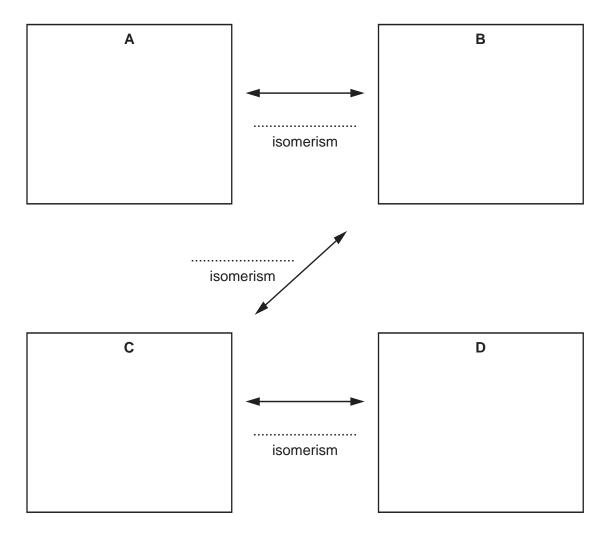
Time Allowed: 72 minutes

Score: /60

Percentage: /100

Grade Boundaries:

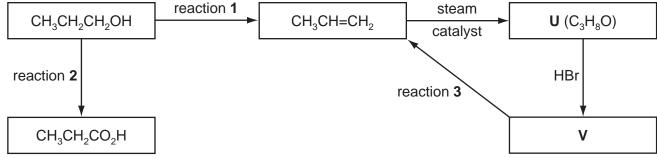
A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%


For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 There are four alcohols, **A**, **B**, **C** and **D**, which are structural isomers with the molecular formula $C_4H_{10}O$.

Alcohol A does not react with acidified potassium dichromate(VI) solution but B, C and D do.

All four alcohols react with hot, concentrated sulfuric acid to form products with the molecular formula C_4H_8 . **A**, **C** and **D** each give a single product in this reaction. **B** gives a mixture of two structural isomers, one of which shows stereoisomerism.


(a) Give the **skeletal** formula for each of the four alcohols and complete the diagram with the names of the types of structural isomerism shown by each linked pair of compounds.

(b)	Give the names of the two structural concentrated sulfuric acid	isomers produced by the reaction of B with ho	ot,
		[2]
(ii)	State which of these two isomers sho capable of showing stereoisomerism.	ws stereoisomerism. Explain why this molecule	is
		[.	 2]
(iii)	Draw displayed formulae to show the	two stereoisomers.	
	stereoisomer 1	stereoisomer 2	2]

[Total: 13]

A series of reactions based on propan-1-ol is shown.

	3-1-2-2-1	
(a)	Suggest a suitable reagent and conditions for reaction 1.	
(b)	Write an equation for reaction 2 , using [O] to represent the oxidising agent.	
	(ii) Suggest a suitable reagent and conditions for reaction 2.	[2 [·]
(c)	Give the structural formulae of U and V .	
	U	
	V	[2]
(d)	Suggest a suitable reagent and conditions for reaction 3.	
		[0]

[Total: 9]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3 L-DOPA is used in the treatment of Parkinson's disease. It can be prepared from vanillin.

(a) L-DOPA and vanillin each contain an aromatic benzene ring.

Describe, with the aid of a diagram, the bonding and shape of a molecule of benzene, C₆H₆.

		[5]
 		[-]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- (b) A student carried out some reactions with samples of L-DOPA and vanillin using reagents X, Y and Z.
 - Reagent **X** reacted with L-DOPA **and** with vanillin.

product with vanillin

- Reagent Y reacted with L-DOPA but not with vanillin.
- Reagent Z reacted with vanillin but not with L-DOPA.

Reage	nt X	
	product with L-DOPA	product with vanillin
Reage	nt Y	
	product with L-DOPA	
Reage	nt Z	
ſ		

[7]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- 4 Crotyl alcohol, CH₃CH=CHCH₂OH, is a colourless liquid which is used as a solvent.
 - (a) In the boxes below, write the **structural formula** of the organic compound formed when crotyl alcohol is reacted separately with each reagent under suitable conditions. If you think no reaction occurs, write 'NO REACTION' in the box.

А	Br ₂ in an inert organic solvent	
В	PCl ₅	
С	H ₂ and Ni catalyst	
D	NaBH ₄	
E	K ₂ Cr ₂ O ₇ /H ⁺ heat under reflux	

[5]

(b) Draw the **displayed formula** of the organic compound formed when crotyl alcohol is reacted with cold, dilute acidified potassium manganate(VII).

[1]

(c) Draw the skeletal formula of the compound formed in reaction E.

(d)	Cro	tyl alcohol is obtained from crotonaldehyde, CH ₃ CH=CHCHO.
	(i)	Describe one test that would confirm the presence of a small amount of unreacted crotonaldehyde in the crotyl alcohol. Give the name of the reagent used and state what you would see.
		reagent
		observation
	(ii)	What type of reaction is the conversion of crotonaldehyde into crotyl alcohol?
		[3]
(e)		mpound P , another unsaturated compound, is found in some blue cheeses. e percentage composition by mass of compound P is C: 73.7%; H: 12.3%; O: 14.0%.
	Cal	culate the empirical formula of compound P.

[2]

[Total: 13]

onions a	and garlic.	in
(a) Ally	I alcohol behaves as a primary alcohol and as an alkene.	
		ed
(i)	acidified potassium dichromate(VI), heating under reflux	
(ii)	bromine in an inert organic solvent	
<i>a</i>		
(111)	cold, dilute, acidified potassium manganate(VII)	
(iv)	hot, concentrated, acidified potassium manganate(VII)	
		[5]
(b) Ally	I alcohol undergoes the following reactions.	
(i)	When reacted with concentrated HC l at 100 °C, CH $_2$ =CHCH $_2$ C l is formed.	
	State as fully as you can what type of reaction this is.	
(ii)	When reacted with MnO_2 at room temperature, CH_2 =CHCHO is formed.	
	What type of reaction is this?	
	onions a Allyl alco (a) Allyl Give sep (i) (iii) (iv) (b) Allyl (i)	 (iii) bromine in an inert organic solvent (iii) cold, dilute, acidified potassium manganate(VII) (iv) hot, concentrated, acidified potassium manganate(VII) (b) Allyl alcohol undergoes the following reactions. (i) When reacted with concentrated HCl at 100 °C, CH₂=CHCH₂Cl is formed. State as fully as you can what type of reaction this is. (ii) When reacted with MnO₂ at room temperature, CH₂=CHCHO is formed.

(c)	Ally	alcohol can be converted into propanal in two steps.
		$CH_2 = CHCH_2OH \xrightarrow{\text{step I}} CH_3CH_2CH_2OH \xrightarrow{\text{step II}} CH_3CH_2CHO$
	(i)	What reagents and conditions would be used for each step?
		step I
		reagent(s)
		condition(s)
		step II
		reagent(s)
		condition(s)
	(ii)	Allyl alcohol and propanal are isomers.
		What form of isomerism do they display?
		[5]
		Įo.
(d)	Ally wat	γ alcohol may also be converted into propanal by using a ruthenium(IV) catalyst inter.
		CH₂=CHCH₂OH
	Suç	ggest what is unusual about this single step reaction.
		[1]
		[Total: 13]