Alcohols

Question Paper 3

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Hydroxy Compounds
Sub-Topic	Alcohols
Paper Type	Theory
Booklet	Question Paper 3

Time Allowed: 87 minutes

Score: /72

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	Е	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

1 Compounds **J** and **K** are isomers with the molecular formula $C_5H_{11}NO$, and they contain the same functional group.

They may both be obtained from ethanol by the following routes.

(a) Draw the structural formulae of the lettered compounds $\bf J$ to $\bf Q$ in the boxes above.

Sug	gest reagents and conditions for the following.	
read	ction I	
read	ction II	
read	ction IV	
		[3]
Wha	at type of reaction is occurring in	
read	ction IV,	
read	ction VI?	
		[2]
(i)	Name the functional group that is common to compounds J and K .	
(ii)	Name the functional group that is common to compounds N and P .	
		[2]
		[Total: 14]
	read read Wha read	What <i>type of reaction</i> is occurring in reaction IV, reaction VI? (i) Name the functional group that is common to compounds J and K .

(a) What would be observed when the following reactions are carried out?

2	Commercial paint and varnish removers contain a mixture of dichloromethane, CH	$_{2}Cl_{2}$	and
	methanol, CH ₃ OH.	2 2	

		each case, give the name or formula of the reaction product which is responsible for observation you have made.
	(i)	$\mathrm{CH_2Cl_2}$ is reacted with NaOH(aq) and $\mathrm{AgNO_3}$ (aq) and the mixture left to stand.
		observation
		product responsible
	(ii)	$\mathrm{CH_3OH}$ is mixed with $\mathrm{PC}l_5$.
		observation
		product responsible
	(iii)	CH ₃ OH is reacted with sodium.
		observation
		product responsible[6]
(b)		en $\mathrm{CH_2Cl_2}$ is heated under reflux with an excess of NaOH(aq), a compound $\mathbf W$ is ned.
	W h	nas the following composition by mass: C, 40.0%; H, 6.7%; O, 53.3%.
	Use CH	e this information and the $\textit{Data Booklet}$ to show that the empirical formula of \mathbf{W} is $_2^{O}$.

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c)	Compounds v	with the empirical	formula CH ₂ O car	n have the molecular	formula $C_2H_4O_2$.
-----	-------------	--------------------	-------------------------------	----------------------	-----------------------

Two possible structural formulae for compounds with molecular formula $\rm C_2H_4O_2$ are $\rm HCO_2CH_3$ and $\rm H_2C=C(OH)_2$.

In the boxes below, draw displayed formulae for **three further** structural isomers with the molecular formula $C_2H_4O_2$.

Do **not** attempt to draw any structures containing rings or O–O bonds.

[3]

(d) Identify which of your compounds, X, Y, or Z, will react with the following reagents.

In each case, state what you would observe.

(i) solid NaHCO₃

compound

observation

(ii) Tollens' reagent

compound

observation[4]

(e) One of the three compounds, X, Y, or Z, shows stereoisomerism.

Draw displayed, labelled structures of the stereoisomers of this compound.

[2]

[Total: 17]

3		-	organic reactions are substitution reactions in which the number of carbon atoms in ganic compound is unchanged.					
	(a)	Wha	at is meant by the term substitution reaction?					
			[1]					
	(b)		example of a substitution reaction is the formation of an alcohol from a genoalkane.					
		(i)	Write a balanced equation for the formation of ethanol from bromoethane.					
		(ii)	State the conditions for this reaction.					
			[2]					
	(c)		few organic reactions, the product contains one more carbon atom than the starting erial.					
		(i)	Write the equation for a reaction in which the organic compound bromoethane, which contains two carbon atoms, is converted into an organic compound which contains three carbon atoms.					
		(ii)	State the conditions for this reaction.					
			[2]					

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(d) Ethanol may be converted into propanoic acid in a three-stage process which uses ethanol as the only organic compound. $C_2H_5OH \xrightarrow{\text{step II}} \mathbf{K} \xrightarrow{\text{step III}} \mathbf{L} \xrightarrow{\text{step III}} C_2H_5CO_2H$ (i) Give the structural formulae of the intermediate compounds \mathbf{K} and \mathbf{L} . $\mathbf{K} = \mathbf{K} = \mathbf{$

condition(s).....

[Total: 11]

[6]

Octadecane, C ₁₈ H ₃₈ , is a long chain hydrocarbon which is present in crude oil. Su chain hydrocarbons are 'cracked' to produce alkanes and alkenes which have molecules.						
	(a)	Give	ve two different conditions under which long chain molecules may be crack	ed.		
				[2]		
	(b)	Oct	tadecane, C ₁₈ H ₃₈ , can be cracked to form hexane and an alkene.			
		Wri	ite a balanced equation for this reaction.			
				[1]		
	Alk	enes	s are important industrially because the C=C bond makes them very reactive	/e.		
	(c)	Eth	nene reacts with bromine to give 1,2-dibromoethane.			
		(i)	What type of reaction is this?			
		(ii)	Outline the mechanism of this reaction, giving the structure of the interme	ediate.		
			Show clearly any relevant dipoles, charges and lone pairs of electrons.			
H.		_	.Н Н <u></u>	_H		
			•••	/		

Вr

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

The unsaturated hydrocarbon Z is obtained by cracking hexane and is important in the chemical industry. The standard enthalpy change of combustion of \mathbf{Z} is $-2059 \, \text{kJ} \, \text{mol}^{-1}$. (d) Define the term standard enthalpy change of combustion. When 0.47 g of **Z** were completely burnt in air, the heat produced raised the temperature of 200 g of water by 27.5 °C. (e) (i) Calculate the amount of heat released in this experiment. (ii) Use the data above and your answer to (i) to calculate the relative molecular mass of **Z**. [4] (f) Deduce the molecular formula of Z. [1] **(g)** The unsaturated hydrocarbon **Z** can be polymerised.

Draw the structure of the polymer of **Z** showing **two** repeat units.

5	Lactic acid, 2-hydroxypropanoic acid, CH ₃ CH(OH)CO ₂ H, occurs in sour milk.								
	Glycollic acid, 2-hydroxyethanoic acid, HOCH ₂ CO ₂ H, occurs in sugar cane.								
	(a) Lactic acid may be synthesised from propene by the following sequence.								
		СН	₃ CH=CH ₂	step I	CH ₃ CH(OH)	CH ₂ OH	step II	CH ₃ CH(OH)CO ₂ H	
		(i)	What reage	ent(s) an	d condition(s) are used	d for step	1?	
			reagent(s)						
			condition(s	s)					
		(ii)	• •		on is step II?				
									[3
	(b)	Gly	collic acid m	nay be sy	nthesised fro	m ethano	ic acid by	the following sequen	ice.
		СН	₃ CO ₂ H —	ep III → (CICH ₂ CO ₂ H	step IV →	HOCH ₂	CO ₂ H	
		(i)	Suggest th	e reager	nt(s) and cond	dition(s) th	nat are us	ed for step III.	
			reagent(s)						
			condition(s	s)					
		(ii)	What reage	ents and	conditions a	re used in	step IV?		
			reagent(s)						
			condition(s	s)					
									[4]
	(c)		ctic acid and nromate(VI)		c acid react o	differently	when he	ated under reflux wit	h acidified
		Dra	w the struct	ural form	nula of the org	anic prod	luct in ea	ch case.	
			product fro	m lactic	acid	prod	uct from	glycollic acid	

(d)	clea	tic acid is chiral. Draw displayed formulae of the two optical isomers of lactic acid arly showing their three-dimensional structures. Indicate with an asterisk (*) the chiral oon atom in each.
		[2]
•		acid and lactic acid each give the reactions of an alcohol group and of a carboxylic up. Each compound will react with the other to give an ester.
(e)		en one molecule of glycollic acid reacts with one molecule of lactic acid, it is possible orm two different esters.
	Dra	w the structure of each of these esters.
		[2]
•		acid and lactic acid are reacted together to make the material for 'soluble stitches' own as 'soluble sutures') which are used in surgery.
		naterial, many molecules of each acid have been reacted to form a long chainer' molecule which contains many ester groups.
This	s poly	vester is used in surgery to sew up wounds inside the body.
	-	eriod of time, the polyester undergoes a chemical reaction and breaks up to re-form ndividual hydroxy-acids.
(f)	(i)	This reaction occurs where the pH of the body is about pH5 to pH6. Suggest what type of chemical reaction causes the polyester material to break up.
	(ii)	Suggest why the products of this reaction are soluble in water.

[Total: 15]

[2]