Phenol

Question Paper 2

Level	International A Level
Subject	Chemistry
Exam Board	CIE
Topic	Hydroxy Compounds
Sub-Topic	Phenol
Paper Type	Theory
Booklet	Question Paper 2

Time Allowed: 69 minutes

Score: /57

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	777.5%	70%	62.5%	57.5%	45%	<45%

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 (a) A series of experiments is carried out in which the reagent shown at the top of the column of the table is mixed, in turn, with each of the reagents at the side.

Complete the following table by writing in each box the formula of any gas produced. Write **x** in the box if no gas is produced.

The first column has been completed as an illustration.

	H ₂ O	OH	CO ₂ H	OH
Na	H_2			
KOH(aq)	x			
Na ₂ CO ₃ (aq)	x			

[5]

(b) Compound **C** is responsible for the pleasant aroma of apples. It can be prepared from phenol by the following 3-step synthesis.

(i) The only by-product of step 1 is HCl. Suggest the reagent that was used to react with phenol to produce compound **A**.

(ii) What type of reaction is occurring in step 2?

(iii) What reagents and conditions are required for step 3?

.....

(iv) State the reagent and conditions needed to convert C back to B, the reverse of step 3.

.....te

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) (i) Either compound A or compound B, or both, react with the following reagents.For each reagent draw the structure of the organic product formed with A, and with B. If no reaction occurs, write 'no reaction in the relevant box.

reagent and conditions	product with A	product with B
an excess of Br ₂ (aq)		
heat with HBr		
pass vapour over heated Al_2O_3		
heat with acidified K ₂ Cr ₂ O ₇		

(ii) Choose one of the above reactions to enable you to distinguish between A and B.
State below the observations you would make with each compound.

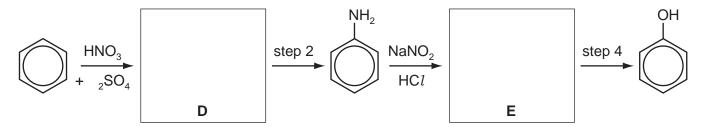
reagent	observation with A	observation with B

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2 (a) Methoxybenzene reacts with Br₂(aq) in a similar manner to phenol.

methoxybenzene

(i) Draw the structural formula of the product of the reaction between methoxybenzene and an excess of bromine.


(ii) Suggest a chemical reaction you could use to distinguish between methoxybenzene and phenol. State the reagent, describe the observations you would make, and give an equation for the reaction.

observation

equation

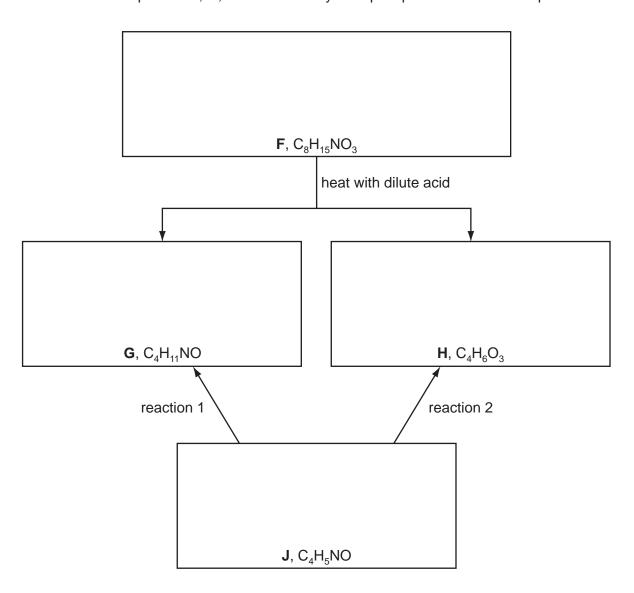
[4]

(b) Phenol can be synthesised from benzene by the following route.

- (i) Suggest structures for compounds **D** and **E** and draw them in the boxes above.
- (ii) Suggest reagents and conditions for

step 2,step 4.

[4]


For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

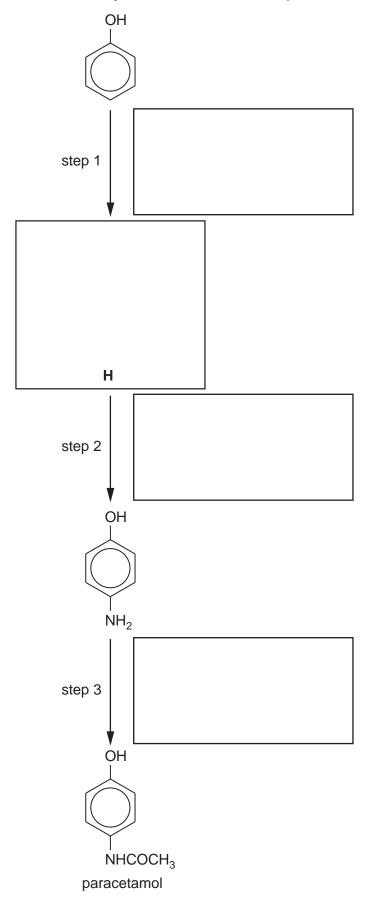
(c) The following chart shows some reactions of compound **F** which is a neutral compound.

G forms a salt with dilute H₂SO₄, whereas **H** forms a salt with NaOH(aq).

Both **G** and **H** can be obtained from compound **J** by separate one-step reactions (reaction 1 and reaction 2 below).

All four compounds **F**, **G**, **H** and **J** form a yellow precipitate with alkaline aqueous iodine.

- (i) Suggest structures for **F**, **G**, **H** and **J**, and draw them in the boxes above.
- (ii) Suggest reactants and conditions for


reaction 1,reaction 2.

[6]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3 (a) Describe and explain how the acidities of ethanol and pher	Describe and explain how the acidities of ethanol and phenol compare to that of water.		
	[4]		
(b) Complete the following equations showing all the products phenol. Include reaction conditions where appropriate in the reaction occurs write no reaction in the products box.	of each of these reactions of e boxes over the arrows. If no		
OH			
+ N			
OH _			
+ NaO			
ОН			
+ C 3CO ₂ H -			
OH CH			
+B ₂			

(c) The analgesic drug paracetamol can be synthesised from phenol by the following route. Suggest reagents and conditions for the each of three steps, and suggest the structure of the intermediate **H**. Write your answers in the boxes provided.

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Cyclohexanol and phenol are both solids with low melting points that are fairly soluble in water.

(a)	Explain why these compounds are more soluble in water than their parent hydrocarbons cyclohexane and benzene.
	[2]
(b)	Explain why phenol is more acidic than cyclohexanol.

[2]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) For **each** of the following reagents, draw the structural formula of the product obtained for **each** of the two compounds. If no reaction occurs write *no reaction* in the box.

reagent	product with cyclohexanol	product with phenol	
Na(s)			
NaOH(aq)			
Br ₂ (aq)			
I ₂ (aq) + OH ⁻ (aq)			
an excess of acidified $\operatorname{Cr}_2\operatorname{O}_7^{2-}(\operatorname{aq})$			
		[7]	
Choose one of the above five reagents that could be used to distinguish between cyclohexanol and phenol. Describe the observations you would make with each compound.			
reagent			

observation with cyclohexanol

(d)

observation with phenol

[Total: 13]

[2]