For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Sensing Devices

Question paper 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Current of Electricity
Sub Topic	Sensing Devices
Paper Type	Theory
Booklet	Question paper 2

Time Allowed: 70 minutes

Score: /58

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1	(a)	Define potential difference (p.d.).
		[1]

(b) A battery of electromotive force 20 V and zero internal resistance is connected in series with two resistors R_1 and R_2 , as shown in Fig. 6.1.

Fig. 6.1

The resistance of $\rm R_2$ is $600\,\Omega.$ The resistance of $\rm R_1$ is varied from 0 to $400\,\Omega.$

Calculate

(i) the maximum p.d. across R_2 ,

(ii) the minimum p.d. across R₂.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c) A light-dependent resistor (LDR) is connected in parallel with R₂, as shown in Fig. 6.2.

Fig. 6.2

When the light intensity is varied, the resistance of the LDR changes from $5.0\,k\Omega$ to $1.2\,k\Omega$.

(i) For the **maximum** light intensity, calculate the total resistance of R₂ and the LDR.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2 A battery of electromotive force 12V and negligible internal resistance is connected to two resistors and a light-dependent resistor (LDR), as shown in Fig. 4.1.

Fig. 4.1

An ammeter is connected in series with the battery. The LDR and switch S are connected across the points XY.

(a) The switch S is open. Calculate the potential difference (p.d.) across XY.

(b) The switch S is closed. The resistance of the LDR is 4.0 k Ω . Calculate the current in the ammeter.

(c)		e switch S remains closed. The intensity of the light on the LDR is increased. So explain the change to	State
	(i)	the ammeter reading,	
	(ii)	the p.d. across XY.	[∠]
			[2]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3 A battery of e.m.f. $4.50 \, \text{V}$ and negligible internal resistance is connected in series with a fixed resistor of resistance $1200 \, \Omega$ and a thermistor, as shown in Fig. 7.1.

Fig. 7.1

(a) At room temperature, the thermistor has a resistance of 1800Ω . Deduce that the potential difference across the thermistor (across AB) is 2.70 V.

(b) A uniform resistance wire PQ of length 1.00 m is now connected in parallel with the resistor and the thermistor, as shown in Fig. 7.2.

[2]

Fig. 7.2

A sensitive voltmeter is connected between point B and a moveable contact M on the wire.

(i)	Explain why, for constant current in the wire, the potential difference between any two points on the wire is proportional to the distance between the points.
	[2]
(ii)	The contact M is moved along PQ until the voltmeter shows zero reading.
	1. State the potential difference between the contact at M and the point Q.
	potential difference =V [1]
	2. Calculate the length of wire between M and Q.
	length = cm [2]
(iii)	The thermistor is warmed slightly. State and explain the effect on the length of wire between M and Q for the voltmeter to remain at zero deflection.
	[2]

4 An amplifier circuit incorporating an operational amplifier (op-amp) is shown in Fig. 9.1.

Fig. 9.1

- (a) State
 - (i) the name of this type of amplifier circuit,

.....[1]

(ii) the gain G in terms of resistances R_1 and R_2 .

.....[1]

(b)	The value of R_1 is 820 Ω . The resistor of resistance R_2 is replaced with a light-dependent resistor (LDR). The input potential difference V_{IN} is 15 mV. Calculate the output potential difference V_{OUT} for the LDR having a resistance of		
	(i)	100 Ω (the LDR is in sunlight),	
	(ii)	1.0 M Ω (the LDR is in darkness).	V _{OUT} = V [2]
			V _{OUT} = V [1]

5 The circuit diagram of Fig. 9.1 is an amplifier circuit incorporating an operational amplifier (op-amp).

Fig. 9.1

- (a) (i) On Fig. 9.1, mark, with the letter X, the virtual earth. [1]
 - (ii) Explain what is meant by a *virtual earth*.

 	 	 [3]

- **(b)** In bright sunlight, the light-dependent resistor (LDR) has resistance 200Ω .
 - (i) Calculate, for the LDR in bright sunlight, the voltmeter reading.

State and explain the effect on the voltmeter reading of this dec brightness.	
211g.11.10001	crease in
	[3]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

6 (a) The circuit for an amplifier incorporating an ideal operational amplifier (op-amp) is shown in Fig. 10.1.

Fig. 10.1

1. the name of this type of amplifier circuit,
[1]
2. why the point P is referred to as a <i>virtual earth</i> .
[3]

(ii) Show that the gain G of this amplifier circuit is given by the expression

$$G = -\frac{R_2}{R_1}.$$

Explain your working.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/
(b) The circuit of Fig. 10.1 is modified by connecting a light-dependent resistor (LDR) as shown in Fig. 10.2.

Fig. 10.2

The resistances R_1 and R_2 are $5.0\,\mathrm{k}\Omega$ and $50\,\mathrm{k}\Omega$ respectively. The input voltage V_IN is +1.2 V. A high-resistance voltmeter measures the output V_OUT . The circuit is used to monitor low light intensities.

- (i) Determine the voltmeter reading for light intensities such that the LDR has a resistance of
 - **1.** $100 \, \text{k}\Omega$,

reading = V [3]

2. 10 kΩ.

(ii)	The light incident on the LDR is provided by a single lamp. Use your answers in (i) to describe and explain qualitatively the variation of the voltmeter reading as the lamp is moved away from the LDR.
	[3]