For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Electronics

Question paper 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Electronics
Sub Topic	
Paper Type	Theory
Booklet	Question paper 1

Time Allowed: 69 minutes

Score: /57

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 An operational amplifier (op-amp) is used in the comparator circuit of Fig. 10.1.

Fig. 10.1

(a) (i) Show that the potential at the inverting input of the op-amp is +1.0 V.

(ii)	Explain why the potential difference across resistor R is + 5V when V_{IN} is greater than 1.0V and is zero when V_{IN} is less than 1.0V.
	V _{IN} > 1.0 V:
	V _{IN} < 1.0 V:
	[4]

[1]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b) The variation with time t of the input voltage $V_{\rm IN}$ is shown in Fig. 10.2.

Fig. 10.2

(i)	On the axes of Fig. 10.2, draw the variation with time t of the output potential $V_{\rm OUT}$.	[2
(ii)	Suggest a use for this type of circuit.	
		[1]

2 (a) An ideal operational amplifier (op-amp) has infinite open-loop gain and infinite input resistance

(impedance).
State three further properties of an ideal op-amp.
1
2
3
[3]

(b) The circuit of Fig. 10.1 is used to detect changes in temperature.

Fig. 10.1

The voltmeter has infinite resistance.

The variation with temperature θ of the resistance R of the thermistor is shown in Fig. 10.2.

Fig. 10.2

(i) When the thermistor is at a temperature of 1.0 °C, the voltmeter reads +1.0 V. Show that, for the thermistor at 1.0 °C, the potential at A is -0.20 V.

[4]

(ii) The potential at A remains at -0.20 V.

Determine the voltmeter reading for a thermistor temperature of 15 °C.

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c)	The	voltmeter reading for a thermistor temperature of 29 °C is 0.35 V.
	(i)	Assuming a linear change of voltmeter reading with change of temperature over the range 1 °C to 29 °C, calculate the voltmeter reading at 15 °C.
		voltmeter reading =V [1]
	(ii)	Suggest why your answers in (b)(ii) and (c)(i) are not the same.
		[1]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

3 A simplified block diagram of a mobile phone handset is shown in Fig. 13.1.

Fig. 13.1

 4 An electronic sensor may be represented by the block diagram of Fig. 10.1.

Fig. 10.1

- (a) State suitable sensing devices, one in each case, for the detection of
 - (i) change of temperature,

	Γ4	17
		11
	ъ.	

(ii) pressure changes in a sound wave.

Г1	1
ľ,	J

(b) The ideal operational amplifier (op-amp) shown in Fig. 10.2 is to be used as a processing unit.

Fig. 10.2

(1)	state the value your answer.	of the output	potential	V _{OUT} for	an input	potential	$V_{\rm IN}$ of +0.	5 V. Explair

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(ii) A sensing device produces a variable potential $V_{\rm IN}$. The variation with time t of $V_{\rm IN}$ is shown in Fig. 10.3.

Fig. 10.3

On the axes of Fig. 10.3, sketch the variation with time t of the output potential $V_{\rm OUT}$. [3]

5 (a) A circuit incorporating an ideal operational amplifier (op-amp) is shown in Fig. 11.1.

Fig. 11.1

- (ii) Explain why the point P is referred to as a *virtual earth*.
- (b) The circuit of Fig. 11.1 is modified, as shown in Fig. 11.2.

State the name of this circuit.

(i)

Fig. 11.2

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

The voltmeter has infinite resistance and its full-scale deflection is 1.0V.

The input potential to the circuit is $V_{\rm IN}$. The switch position may be changed in order to have different values of resistance in the circuit.

The input potential $V_{\rm IN}$ and the switch position are varied. For each switch position, the reading of the voltmeter is 1.0V. Complete Fig. 11.3 for the switch positions shown.

switch position	V _{IN} /mV	resistance
А	10	R _A =
В	100	R _B =
С		$R_{\rm C} = 1.0 \mathrm{k}\Omega$

Fig. 11.3

(ii) By reference to your answers in (i), suggest a use for the circuit of Fig. 11.2.

[3]

6	(a)	State the function of a comparator circuit incorporating an operational amplifier (op-amp).

(b) An ideal op-amp is incorporated into the circuit of Fig. 10.1.

Fig. 10.1

- (i) On Fig. 10.1, draw a circle around the part of the circuit that is being used as an output device. [1]
- (ii) Show that the potential at the non-inverting input of the op-amp is 1.0 V.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(iii) The variation with time t of the potential $V_{\rm IN}$ at the inverting input of the op-amp is shown in Fig. 10.2.

Fig. 10.2

- **1.** On the axes of Fig. 10.2, draw the variation with time *t* of the output potential of the op-amp. [3]
- **2.** State whether each diode is emitting light or is not emitting light at time t_1 and at time t_2 .

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

7	(a)	State three properties of an ideal operational amplifier (op-amp).
		1
		2

(b) An amplifier circuit is shown in Fig. 9.1.

Fig. 9.1

(i) Calculate the gain of the amplifier circuit.

[3]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(ii) The variation with time t of the input potential $V_{\rm IN}$ is shown in Fig. 9.2.

Fig. 9.2

On the axes of Fig. 9.2, show the variation with time t of the output potential $V_{\rm OUT}$. [3]